首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of long, branched, and complex carbohydrate sequences remains a challenging task in chemical synthesis. Reported here is an efficient and modular one-pot synthesis of a nona-decasaccharide and shorter sequences from Psidium guajava polysaccharides, which have the potent α-glucosidase inhibitory activity. The synthetic strategy features: 1) several one-pot glycosylation reactions on the basis of N-phenyltrifluoroacetimidate (PTFAI) and Yu glycosylation to streamline the chemical synthesis of oligosaccharides, 2) the successful and efficient assembly sequences (first O3′, second O5′, final O2′) toward the challenging 2,3,5-branched Araf motif, 3) the stereoselective 1,2-cis-glucosylation by reagent control, and 4) the convergent [6+6+7] one-pot coupling reaction for the final assembly of the target nona-decasaccharide. This orthogonal one-pot glycosylation strategy can streamline the chemical synthesis of long, branched, and complicated carbohydrate chains.  相似文献   

2.
The synthesis of long, branched, and complex carbohydrate sequences remains a challenging task in chemical synthesis. Reported here is an efficient and modular one‐pot synthesis of a nona‐decasaccharide and shorter sequences from Psidium guajava polysaccharides, which have the potent α‐glucosidase inhibitory activity. The synthetic strategy features: 1) several one‐pot glycosylation reactions on the basis of N‐phenyltrifluoroacetimidate (PTFAI) and Yu glycosylation to streamline the chemical synthesis of oligosaccharides, 2) the successful and efficient assembly sequences (first O3′, second O5′, final O2′) toward the challenging 2,3,5‐branched Araf motif, 3) the stereoselective 1,2‐cis‐glucosylation by reagent control, and 4) the convergent [6+6+7] one‐pot coupling reaction for the final assembly of the target nona‐decasaccharide. This orthogonal one‐pot glycosylation strategy can streamline the chemical synthesis of long, branched, and complicated carbohydrate chains.  相似文献   

3.
A new, efficient synthesis of oligosaccharides, which involves solid‐phase reactions without mixing in combination with an orthogonal‐glycosylation strategy, is described. Despite a great deal of biological interest, the combinatorial chemistry of oligosaccharides is an extremely difficult subject. The problems include 1) lengthy synthetic protocols required for the synthesis and 2) the variety of glycosylation conditions necessary for individual reactions. These issues were addressed and solved by using the orthogonal‐coupling protocol and the application of a temperature gradient to provide appropriate conditions for individual reactions. Furthermore, we succeeded in carrying out solid‐phase reactions with neither mechanical mixing nor flow. In this report, the synthesis of a series of trisaccharides, namely, α/β‐L ‐Fuc‐(1→6)‐α/β‐D ‐Gal‐(1→2/3/4/6)‐α/β‐D ‐Glc‐octyl, is reported to demonstrate the eligibility of the synthetic method in combinatorial chemistry.  相似文献   

4.
A disialylated tetrasaccharide, Neu5Ac(α2,3)Gal(β1,3)[Neu5Ac(α2,6)]GlcNAc ( 1 ), which is found at the termini of some N‐glycans, has been synthesized. Compound 1 was obtained through an α‐sialylation reaction between a sialic acid donor and a trisaccharide that was synthesized from the glycosylation of a sialylated disaccharide with a glucosaminyl donor. This synthetic route enabled the synthesis of the as‐described disialylated structure. A more‐convergent route based on the glycosylation of two sialylated disaccharides was also established to scale up the synthesis. Protection of the amide groups in the sialic acid residues significantly increased the yield of the glycosylation reaction between the two sialylated disaccharides, thus suggesting that the presence of hydrogen bonds on the sialic acid residues diminished their reactivity.  相似文献   

5.
The first total synthesis of the branched oligosaccharide OSE‐1 of Mycobacterium gordonae (strain 990) is reported. An intramolecular aglycon delivery approach was used for constructing the desymmetrized 1,1′‐α,α‐linked trehalose moiety. A [3+2] glycosylation of the trisaccharide donor and trehalose acceptor furnished the right hand side pentasaccharide. Regioselective O3 glycosylation of L ‐rhamnosyl 2,3‐diol allowed expedient synthesis of the left hand side tetrasaccharide. The nonasaccharide was assembled in a highly convergent fashion through a [4+5] glycosylation.  相似文献   

6.
Branched oligosaccharide lycotetraose, beta-D-glucopyranosyl-(1-->2)-[beta-D-xylopyranosyl-(1-->3)]-beta-D-glucopyranosyl-(1-->4)-beta-D-galactopyranose, is a key constituent of many steroidal saponins, including glycoalkaloid alpha-tomatine, which is involved in protection of plants from invading pathogens. A new synthesis of the methyl beta-lycotetraoside () is described. Key steps of the synthesis include two successive glycosylation reactions of disaccharide acceptor methyl (4,6-O-benzylidene-3-O-p-methoxybenzyl-beta-D-glucopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-galactopyranoside with readily available benzoylated trichloroacetimidates of alpha-D-glucopyranose and alpha,beta-D-xylopyranose. This scheme allows sequential glycosylation in one-pot on account of the convenient in situ removal of a p-methoxybenzyl protecting group under the acid conditions of the first glycosylation step. Following deprotection, tetrasaccharide was obtained in 19% yield over eight steps.  相似文献   

7.
Lipopolysaccharides from Bacteroides vulgatus represent interesting targets for the treatment of inflammatory bowel diseases. However, efficient access to long, branched and complex lipopolysaccharides remains challenging. Herein, we report the modular synthesis of a tridecasaccharide from Bacteroides vulgates through an orthogonal one-pot glycosylation strategy based on glycosyl ortho-(1-phenylvinyl)benzoates, which avoids the issues of thioglycoside-based one-pot synthesis. Our approach also features: 1) 5,7-O-di-tert-butylsilylene-directed glycosylation for stereoselective construction of the α-Kdo linkage; 2) hydrogen-bond-mediated aglycone delivery for the stereoselective formation of β-mannosidic bonds; 3) remote anchimeric assistance for stereoselective assembly of the α-fucosyl linkage; 4) several orthogonal one-pot synthetic steps and strategic use of orthogonal protecting groups to streamline oligosaccharide assembly; 5) convergent [1+6+6] one-pot synthesis of the target.  相似文献   

8.
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.

Stereoselective and one-pot synthesis of Lentinus giganteus glycans with antitumor activities has been accomplished, which features a newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-galactosylation strategy.  相似文献   

9.
BACKGROUND: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure-function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. RESULTS: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His(10)-WThEPO, His(10)-Asn24Cys, His(10)-Asn38Cys, His(10)-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l(-1) from Escherichia coli. Chemical glycosylation with glycosyl-beta-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. CONCLUSIONS: Erythropoietin expressed in E. coli bearing specific Asn-->Cys mutations at natural glycosylation sites can be glycosylated using beta-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins.  相似文献   

10.
Both glycans (O-glycosides) and nucleosides (N-glycosides) play important roles in numerous biological processes. Chemical synthesis is a reliable and effective means to solve the attainability issues of these essential biomolecules. However, due to the stereo- and regiochemical issues during glycan assembly, together with problems including the poor solubility and nucleophilicity of nucleobases in nucleoside synthesis, the development of one-pot glycosylation strategies toward efficient synthesis of both glycans and nucleosides remains poor and challenging. Here, we report the first orthogonal and reactivity-based one-pot glycosylation strategy suitable for both glycan and nucleoside synthesis on the basis of glycosyl ortho-(1-phenylvinyl)benzoates. This one-pot glycosylation strategy not only inherits the advantages including no aglycon transfers, no undesired interference of departing species, and no unpleasant odors associated with the previously developed orthogonal one-pot glycosylation strategy based on glycosyl ortho-alkynylbenzoates, but also highly expands the scope (glycans and nucleosides) and increases the number of leaving groups that could be employed for the multistep one-pot synthesis (up to the formation of four different glycosidic bonds). In particular, the current one-pot glycosylation strategy is successfully applied to the total synthesis of a promising tuberculosis drug lead capuramycin and the divergent and formal synthesis of TMG-chitotriomycin with potent and specific inhibition activities toward β-N-acetylglucosaminidases and important endosymbiotic lipochitooligosaccharides including the Nod factor and the Myc factor, which represents one of the most efficient and straightforward synthetic routes toward these biologically salient molecules.

The first one-pot glycosylation strategy for both glycan and nucleoside synthesis based on glycosyl ortho-(1-phenylvinyl)benzoates has been developed, which is applied to the synthesis of TMG-chitotriomycin, lipochitooligosaccharides and capuramycin.  相似文献   

11.
An efficient synthesis of cyclodextrins (CDs) by using the intramolecular glycosylation is demonstrated. alpha-CD, an alpha(1-->4)linked hexaglucoside, was prepared via a block condensation of three maltose units. A modified key maltose intermediate as a precursor to both glycosyl donor and acceptor components was prepared in 6 steps starting from maltose. All the glycosylation for chain elongation and cyclization of saccharides was carried out after tethering the donor to the acceptor by the phthaloyl bridge to give the desired saccharides in good yields with complete alpha-selectivity. delta-CD composed of 9 glucose units was synthesized by the same manner from three maltotriose units.  相似文献   

12.
Glycosyl isoquinoline‐1‐carboxylate was developed as a novel benchtop stable and readily available glycosyl donor. The glycosylation reaction was promoted by the inexpensive Cu(OTf)2 salt under mild reaction conditions. The copper isoquinoline‐1‐carboxylate salt was precipitated from the solution and thus rendered a traceless leaving group. Surprisingly, the proton from the acceptor was absorbed by the precipitated metal complex and the reaction mixture remained at neutral pH. The copper‐promoted glycosylation was also proven to be completely orthogonal to the gold‐promoted glycosylation, and an iterative synthesis of oligosaccharides from benchtop stable anomeric ester building blocks becomes possible under mild reaction conditions.  相似文献   

13.
The application of an efficient glycosylation methodology using 2,3-unsaturated sugars to synthesize critical precursors required for the total synthesis of an antibiotic, vineomycin B2 (1), was demonstrated. The required disaccharide, the acurosyl rhodinose derivative of 1, was prepared by chemoselective glycosylation using a 2,3-saturated glycosyl acetate corresponding to the rhodinose moiety and a 2,3-unsaturated glycosyl acetate corresponding to the acurose portion. Further, the right-hand side chain of 1, consisting of β-oxo-tert-alcohol and rhodinose, was constructed by a powerful glycosylation approach using a 2,3-unsaturated glycosyl acetate in an ionic liquid under reduced pressure.  相似文献   

14.
Efficient, stereoselective glycosylation methods are required for the synthesis of complex oligosaccharides as tools in glycobiology. All glycosylation methods, which have found wide acceptance, rely on Lewis acid activation of glycosyl donors prior to glycosylation. Here, we present a new and efficient method for glycosylation under neutral or mildly basic conditions. Glycosides of methyl 2-hydroxy-3,5-dinitrobenzoate (DISAL) and its para regioisomer, methyl 4-hydroxy-3,5-dinitrobenzoate, were prepared by nucleophilic aromatic substitution. In a first demonstration of their potential as glycosyl donors, stereospecific glycosylation of methanol was achieved. In the glycosylation of more hindered alcohols, the beta-donor proved more reactive, and alpha-glucosides were predominantly formed. Glycosylation of protected monosaccharides, with free 6-OH or 3-OH, proceeded smoothly in 1-methyl-2-pyrrolidinone (NMP) at 40-60 degrees C in the absence of Lewis acids and bases in good to excellent yields. Glycosylation of 3-OH gave the alpha-linked disaccharide only.  相似文献   

15.
A method for the stereocontrolled synthesis of a bacterial phosphoglycolipid (PGL 1 ) isolated from thermophilic bacteria is described. The key features of the synthesis include a highly α‐selective glycosylation reaction between a trichloroacetimidate donor and a D ‐lyxose‐derived primary alcohol acceptor and the late‐stage incorporation of the phospholipid.  相似文献   

16.
A concise synthesis of a hexasaccharide related to the adhesin receptor of Streptococcus oralis ATCC 55229 (previously characterized as Streptococcus sanguis H1) has been achieved in excellent yield. A general glycosylation condition has been used throughout the synthetic scheme. All glycosylation steps and protecting group functionalization steps are high yielding and suitable for scale-up preparation.  相似文献   

17.
[reaction: see text] We describe an efficient synthesis of di-branched heptasaccharide 1 having phytoalexin elicitor activity in soybeans by one-pot glycosylation. The synthesis involves chemo- and regioselective sequential six-step glycosylations using seven independent building blocks and sequential removal of acyl- and benzyl ether-type protecting groups. The coupling of seven building blocks requires only four chemoselective activitable leaving groups of glycosyl donors. Both the glycosylation and deprotection reactions can be achieved utilizing a parallel manual synthesizer.  相似文献   

18.
[structure: see text]. A novel linker system has been designed, and its first application to solid-phase oligosaccharide synthesis is described. The use of the highly reactive o-nitro-phenoxyacetate linker allows a fast and quantitative cleavage using mild basic conditions. This method combined with the trichloroacetimidate glycosylation exhibits highly promising results as demonstrated for the synthesis of tetrasaccharide 1 (n = 3) containing glucose beta(1 --> 4) and beta(1 --> 6) linkages.  相似文献   

19.
An efficient synthetic strategy has been developed for the synthesis of a pentasaccharide repeating unit of the O-antigen of Escherichia coli O102 strain. The target pentasaccharide 1 has been synthesized using a [2+3] block glycosylation strategy. All glycosylation steps are highly stereoselective and high yielding. Concept of armed-disarmed and orthogonal glycosylation strategies has been applied during the synthesis. The target compound has been synthesized using the minimum number of steps.  相似文献   

20.
Herein, we report a new glycosylation system for the highly efficient and stereoselective formation of glycosidic bonds using glycosyl N-phenyl trifluoroacetimidate (PTFAI) donors and a charged thiourea hydrogen-bond-donor catalyst. The glycosylation protocol features broad substrate scope, controllable stereoselectivity, good to excellent yields and exceptionally mild catalysis conditions. Benefitting from the mild reaction conditions, this new hydrogen bond-mediated glycosylation system in combination with a hydrogen bond-mediated aglycon delivery system provides a reliable method for the synthesis of challenging phenolic glycosides. In addition, a chemoselective glycosylation procedure was developed using different imidate donors (trichloroacetimidates, N-phenyl trifluoroacetimidates, N-4-nitrophenyl trifluoroacetimidates, benzoxazolyl imidates and 6-nitro-benzothiazolyl imidates) and it was applied for a trisaccharide synthesis through a novel one-pot single catalyst strategy.

A mild glycosylation system was developed using glycosyl imidate donors and a charge-enhanced thiourea H-bond donor catalyst. The method can be used for the effective synthesis of O-, C-, S- and N-glycosides and chemoselective one-pot glycosylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号