首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complexes cis-Tp(iPr)Mo(VI)O2(OAr) (Tp(iPr) = hydrotris(3-isopropylpyrazol-1-yl)borate, -OAr = phenolate or naphtholate derivative) are formed upon metathesis of Tp(iPr)MoO2Cl and HOAr/NEt3 in dichloromethane. The orange, diamagnetic dioxo-Mo(VI) complexes exhibit strong nu(MoO2) IR bands at ca. 930 and 905 cm(-1) and NMR spectra indicative of C(s) symmetry. They undergo electrochemically reversible, one-electron reductions at potentials in the range -0.714 to -0.855 V vs SCE (in MeCN) and react with PEt3 to produce Tp(iPr)Mo(IV)O(OAr)(OPEt3). The green, diamagnetic oxo-Mo(IV) complexes display a single nu(MoO) IR band at ca. 950 cm(-1) and exhibit NMR spectra indicative of C1 symmetry. The crystal structures of eight dioxo-Mo(VI) complexes have been determined to assess the degree of frontal (O3-donor face) steric congestion at the Mo center, to identify complexes amenable to conversion into monomeric oxosulfido-Mo(VI) derivatives. The complexes display distorted octahedral geometries, with a cis arrangement of terminal oxo ligands, with d(Mo=O)av = 1.694 A and angle(MoO2)av = 103.4 degrees. Maximal frontal steric congestion is observed in the 2-phenolate derivatives, and these are identified as precursors for strictly monomeric(solid and solution state) oxosulfido-Mo(VI) counterparts.  相似文献   

2.
The complexes cis-TpiPrMoVIO2(OAr-R) (TpiPr=hydrotris(3-isopropylpyrazol-1-yl)borate, -OAr-R=hydrogen-bonding phenolate derivative) are formed upon reaction of TpiPrMoO2Cl, HOAr-R, and NEt3 in dichloromethane. The orange, diamagnetic, dioxo-Mo(VI) complexes exhibit strong nu(MoO2) IR bands at ca. 935 and 900 cm(-1) and NMR spectra indicative of Cs symmetry. They undergo electrochemically reversible, one-electron reductions at potentials in the range -0.836 to -0.598 V vs SCE; the only exception is the 2-CO2Ph derivative, which exhibits an irreversible reduction at -0.924 V. The complexes display distorted octahedral geometries, with a cis arrangement of terminal oxo ligands and with d(Mo=O)av=1.695 A and angle(MoO2)av=103.2 degrees. The R groups of the 2-CHO and 2-NHCOMe derivatives are directed away from the oxo groups and into a cleft in the TpiPr ligand; these derivatives are characterized by Mo-O-Cipso angles of ca. 131 degrees (conformation 1). The R group(s) in the 2-CO2Me and 2,3-(OMe)2 derivatives lie above the face of the three O-donor atoms (directed away from the TpiPr ligand) and the complexes display Mo-O-Cipso angles of 153.1(2) and 149.7(2) degrees, respectively (conformation 2). Conformations 1 and 2 are both observed in the positionally disordered 2-COMe and 2-COEt derivatives, the two conformers having Mo-O-Cipso angles of 130-140 and >150 degrees, respectively. The 3-COMe and 3-NEt2 derivatives have substituents that project away from the TpiPr ligand and Mo-O-Cipso angles of 134.2(2) and 147.7(2) degrees, respectively. Many of the complexes exhibit fluxional behavior on the NMR time scale, consistent with the rapid interconversion of two conformers in solution.  相似文献   

3.
Intermediates in the oxygen atom transfer from Mo(VI) to P(III), [Tp(iPr)MoOX(OPR3)] (Tp(iPr) = hydrotris(3-isopropylpyrazol-1-yl)borate; X = Cl-, phenolates, thiolates), have been isolated from the reactions of [Tp(iPr)MoO2X] with phosphines (PEt3, PMePh2, PPh3). The green, diamagnetic oxomolybdenum(IV) complexes possess local C(1) symmetry (by NMR spectroscopy) and exhibit IR bands assigned to nu(Mo==O) (approximately 950 cm(-1)) and nu(P==O) (1140-1083 cm(-1)) vibrations. The X-ray crystal structures of [Tp(iPr)MoOX(OPEt3)] (X = OC6H4-2-sBu, SnBu), [Tp(iPr)MoO(OPh)(OPMePh2)], and [Tp(iPr)MoOCl(OPPh3)] have been determined. The monomeric complexes exhibit distorted octahedral geometries, with coordination spheres composed of tridentate fac-Tp(iPr) and mutually cis monodentate terminal oxo, phosphoryl (phosphine oxide), and monoanionic X ligands. The electronic structures and stabilities of the complexes have been probed by computational methods, with the three-dimensional energy surfaces confirming the existence of a low-energy steric pocket that restricts the conformational freedom of the phosphoryl ligand and inhibits complete oxygen atom transfer. The reactivity of the complexes is also briefly described.  相似文献   

4.
Carbonyloxotungsten(IV) complexes, TpWOX(CO), are produced in the reactions of dioxygen (for X = Cl, Br, I) or pyridine N-oxide [for X = S(2)P(OPr(i))(2), S(2)PPh(2)] with TpWX(CO)(2) [Tp = hydrotris(3,5-dimethylpyrazol-1-yl)borate]. Analogous carbonylsulfidotungsten(IV) species, TpWSX(CO), result from the reactions of TpWX(kappa(2)-MeCN)(CO) with propylene sulfide. The carbonyloxo complexes exhibit nu(CO) and nu(W=O) IR bands in the 1995-1965 and 957-951 cm(-1) regions, respectively; the nu(CO) and nu(W=S) bands of the carbonylsulfido species appear at 1970-1937 and 512-502 cm(-1), respectively. The complexes possess C(1) symmetry and display carbonyl (13)C NMR resonances at delta 272-287, with J(WC) 160-196 Hz. The crystal structures of TpWO(S(2)PPh(2))(CO) and TpWS(S(2)PPh(2))(CO).0.5CHCl(3) reveal distorted octahedral tungsten centers coordinated by a fac tridentate Tp ligand and mutually cis, monodentate chalcogenido [d(W=O) = 1.698(4) A; d(W=S) = 2.135(4) Angstroms], carbonyl, and dithiophosphinato ligands. In refluxing toluene, TpWOI(CO) converts into purple, mixed-valence TpW(III)I(CO)(mu-O)W(V)OITp. The dinuclear complex contains a nearly linear [173.1(6) degrees] mu-oxo bridge connecting disparate distorted octahedral tungsten centers. The metrical parameters and spectroscopic properties are consistent with the presence of a W(III)/W(V) mixed-valence species, possessing a filled, delocalized three-center (W-O-W) pi bond and a localized (on W(III)), filled d(pi) orbital that back-bonds to the carbonyl ligand.  相似文献   

5.
Density functional calculations have been used to investigate oxygen atom transfer reactions from the biological oxygen atom donors trimethylamine N-oxide (Me(3)NO) and dimethyl sulfoxide (DMSO) to the molybdenum(IV) complexes [MoO(mnt)(2)](2-) and [Mo(OCH(3))(mnt)(2)](-) (mnt = maleonitrile-1,2-dithiolate), which may serve as models for mononuclear molybdenum enzymes of the DMSO reductase family. The reaction between [MoO(mnt)(2)](2-) and trimethylamine N-oxide was found to have an activation energy of 72 kJ/mol and proceed via a transition state (TS) with distorted octahedral geometry, where the Me(3)NO is bound through the oxygen to the molybdenum atom and the N-O bond is considerably weakened. The computational modeling of the reactions between dimethyl sulfoxide (DMSO) and [MoO(mnt)(2)](2-) or [Mo(OCH(3))(mnt)(2)](-) indicated that the former is energetically unfavorable while the latter was found to be favorable. The addition of a methyl group to [MoO(mnt)(2)](2-) to form the corresponding des-oxo complex not only lowers the relative energy of the products but also lowers the activation energy. In addition, the reaction with [Mo(OCH(3))(mnt)(2)](-) proceeds via a TS with trigonal prismatic geometry instead of the distorted octahedral TS geometry modeled for the reaction between [MoO(mnt)(2)](2-) and Me(3)NO.  相似文献   

6.
Interaction of maleic hydrazide (LH(2)) with [Cr(CO)(6)] in air at atmospheric pressure resulted in the formation of the complex [(LH)Cr(mu-O)(2)Cr(LH)] (1). Reaction of LH(2) with [Mo(CO)(6)] in air also gave the complex [(LH(2))O(2)Mo(mu-O)(2)MoO(2)(LH(2))] (2). Under the same conditions, the reaction of LH(2) with [Ru(3)(CO)(12)] resulted in the formation of the tricarbonyl complex [Ru(CO)(3)(LH(2))] (3). The complexes were characterized by elemental analysis, IR, and (1)H NMR spectroscopy. The thermal properties of the complexes were investigated by thermogravimetry technique.  相似文献   

7.
Infrared photodissociation (IRPD) spectra of carbon dioxide cluster ions, (CO(2))(n) (+) with n=3-8, are measured in the 1000-3800 cm(-1) region. IR bands assignable to solvent CO(2) molecules are observed at positions close to the vibrational frequencies of neutral CO(2) [1290 and 1400 cm(-1) (nu(1) and 2nu(2)), 2350 cm(-1) (nu(3)), and 3610 and 3713 cm(-1) (nu(1)+nu(3) and 2nu(2)+nu(3))]. The ion core in (CO(2))(n) (+) shows several IR bands in the 1200-1350, 2100-2200, and 3250-3500 cm(-1) regions. On the basis of previous IR studies in solid Ne and quantum chemical calculations, these bands are ascribed to the C(2)O(4) (+) ion, which has a semicovalent bond between the CO(2) components. The number of the bands and the bandwidth of the IRPD spectra drastically change with an increase in the cluster size up to n=6, which is ascribed to the symmetry change of (CO(2))(n) (+) by the solvation of CO(2) molecules and a full occupation of the first solvation shell at n=6.  相似文献   

8.
The hydrothermal reaction of MoO(3) with BaH(3)IO(6) at 180 degrees C for 3 days results in the formation of Ba[(MoO(2))(6)(IO(4))(2)O(4)] x H(2)O (1). Under similar conditions, the reaction of Ba(OH)(2) x 8H(2)O with MoO(3) and Ba(IO(4))(2) x 6H(2)O yields Ba(3)[(MoO(2))(2)(IO(6))(2)] x 2H(2)O (2). The structure of 1, determined by single-crystal X-ray diffraction, consists of corner- and edge-sharing distorted MoO(6) octahedra that create two-dimensional slabs. Contained within this molybdenum oxide framework are approximately C(2v) tetraoxoiodate(V) anions, IO(4)(3-), that are involved in bonding with five Mo(VI) centers. The two equatorial oxygen atoms of the IO(4)(3-) anion chelate a single Mo(VI) center, whereas the axial atoms are mu(3)-oxo groups and complete the octahedra of four MoO(6) units. The coordination of the tetraoxoiodate(V) anion to these five highly electropositive centers is probably responsible for stabilizing the substantial anionic charge of this anion. The Ba(2+) cations separate the layers from one another and form long ionic contacts with neighboring oxygen atoms and a water molecule. Compound 2 also contains distorted MoO(6) octahedra. However, these solely edge-share with octahedral hexaoxoiodate(VII), IO(6)(5-), anions to form zigzagging one-dimensional, (1)(infinity)[(MoO(2))(IO(6))](3-), chains that are polar. These chains are separated from one another by Ba(2+) cations that are coordinated by additional water molecules. Bond valence sums for the iodine atoms in 1 and 2 are 5.01 and 7.03, respectively. Crystallographic data: 1, monoclinic, space group C2/c, a = 13.584(1) A, b = 7.3977(7) A, c = 20.736(2) A, beta = 108.244(2) degrees, Z = 4; 2, orthorhombic, space group Fdd2, a = 13.356(7) A, b = 45.54(2) A, c = 4.867(3) A, Z = 8.  相似文献   

9.
(H_2en)_2[Se_2Mo_5O_(21)]2H_2O的水热合成、晶体结构与光谱研究   总被引:4,自引:0,他引:4  
在水热条件下, 以SeO2、V2O5、MoO3、K2CO3、en(乙二胺)作为起始原料, 得到了标题化合物(H2en)2[Se2Mo5O21]2H2O, 利用IR、UV、荧光光谱、单晶-X射线衍射等方法对其进行了表征。结构测定表明, 该化合物属于正交晶系, 空间群: P212121, 化学式: C4H24- Mo5N4O23Se2, 晶胞参数: a = 12.1386(7), b = 17.7118(8), c =11.7092(5) ? V = 2517.4(2) ?, Z = 4, Dc = 2.987 g/cm3, Mr = 1133.89, m = 5.419 mm-1, F(000) = 2144, 最终结构偏离因子R = 0.0285, wR = 0.0400, S = 0.904。该化合物由2个双质子化的en、2个H2O分子以及杂多阴离子[Se2Mo5O21]4-组成。其中,杂多阴离子由5个畸变的MoO6八面体以共边或共顶点形式连接构成一个平面骨架; 2个畸变的SeO3四面体和MoO6八面体以共顶点形式连接, 且位于平面的两侧;质子化的en位于4个[Se2Mo5O21]4-离子围成的四面体空位中, 与杂多阴离子和水分子通过氢键连接成无限三维结构。最后我们用B3LYP方法研究了阴离子簇的电子结构。  相似文献   

10.
The compounds [((t)BuCO(2))(3)M(2)(mu-O(2)CC(6)F(4)CO(2))M(2)(O(2)C(t)Bu)(3)], M(4)PFT, where M = Mo or W, are shown by model fitting of the powder X-ray diffraction data to have an infinite "twisted" structure involving M.O intermolecular interactions in the solid state. The dihedral angle between the M(2) units of each molecule is 54 degrees. Electronic structure calculations employing density functional theory (Gaussian 98 and ADF2000.01, gradient corrected and time dependent) on the model compounds (HCO(2))(3)M(2)(mu-O(2)CC(6)F(4)CO(2))M(2)(O(2)CH)(3), where M = Mo or W, reveal that in the gas phase the model compounds adopt planar D(2)(h) ground-state structures wherein M(2) delta to bridge pi back-bonding is maximized. The calculations predict relatively small HOMO-LUMO gaps of 1.53 eV for M = Mo and 1.22 eV for M = W for this planar structure and that, when the "conjugation" is removed by rotation of the plane of the C(6)F(4) ring to become orthogonal to the M(4) plane, this energy gap is nearly doubled to 2.57 eV for M = Mo and 2.18 eV for M = W. The Raman and resonance Raman spectra of solid M(4)PFT and of Mo(4)PFT in THF solution are dominated by bands assigned to the bridging perfluoroterephthalate (pft) group. The intensities of certain Raman bands of solid W(4)PFT are strongly enhanced on changing the excitation line from 476.5 nm (off resonance) to 676.5 nm, which is on resonance with the W(2) delta --> CO(2) (pft) pi transition at ca. 650 nm. The resonance enhanced bands are delta(s)(CO(2)) (pft) at 518 cm(-)(1) and its first overtone at 1035 cm(-)(1), consistent with the structural change to W(4)PFT expected on excitation from the ground to this pi excited state. The electronic transitions for solid Mo(4)PFT (lowest at 410 nm) were not accessible with the available excitation lines (457.9-676.5 nm), and no resonance Raman spectra of this compound could be obtained. For Mo(4)PFT in THF solution, it is the band at 399 cm(-)(1) assigned to nu(MoMo) which is the most enhanced on approach to resonance with the electronic band at 470 nm; combination bands involving the C(6)F(4) ring-stretching mode, 8a, are also enhanced.  相似文献   

11.
12.
A nickel-1,10-phenanthroline complex supported on an octamolybdate, [{Ni(phen)2}2(x- Mo8O26)], has been hydrothermally synthesized with MoO3, H2MoO4, Ni(OAc)2· 6H2O and 1,10-phenathroline (1,10-phen) as raw materials. The crystals of the compound belong to monoclinic P21/n space group, a = 1.2952(2), b = 1.6659(10), c = 1.3956(12) nm, b =106.273(8)°, V = 2.8906(5) nm3, Z = 2. 5604 observable reflections (I >2s(I)) were used for structure resolution and refinements to converge to final R1 = 0.0414, wR2 = 0.0815. The result of structure determination shows that the compound contains octamolybdate possessing a novel structure type (named as x-isomer). The feature of x-[Mo8O26]4- is that it is composed of Mo6O6 ring and two MoO6 octahedra located at cap positions on opposite faces. The Mo6O6 ring contains two octahedral and four trigonal-bipyramidal MoVI atoms. Each x-[Mo8O26]4- unit is bonded with two [Ni(phen)2]2+ through terminal oxygen atoms of octahedral and neighbouring trigonal-bipyramidal Mo atom in the Mo6O6 ring. IR and UV-Vis spectra of the compound were measured and its electronic structure was studied by EHMO method.  相似文献   

13.
The active sites of the xanthine oxidase and sulfite oxidase enzyme families contain one pterin-dithiolene cofactor ligand bound to a molybdenum atom. Consequently, monodithiolene molybdenum complexes have been sought by exploratory synthesis for structural and reactivity studies. Reaction of [MoO(S(2)C(2)Me(2))(2)](1-) or [MoO(bdt)(2)](1-) with PhSeCl results in removal of one dithiolate ligand and formation of [MoOCl(2)(S(2)C(2)Me(2))](1-) (1) or [MoOCl(2)(bdt)](1-) (2), which undergoes ligand substitution reactions to form other monodithiolene complexes [MoO(2-AdS)(2)(S(2)C(2)Me(2))](1-) (3), [MoO(SR)(2)(bdt)](1-) (R = 2-Ad (4), 2,4,6-Pr(i)(3)C(6)H(2) (5)), and [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (6) (Ad = 2-adamantyl, bdt = benzene-1,2-dithiolate). These complexes have square pyramidal structures with apical oxo ligands, exhibit rhombic EPR spectra, and 3-5 are electrochemically reducible to Mo(IV)O species. Complexes 1-6 constitute the first examples of five-coordinate monodithiolene Mo(V)O complexes; 6 approaches the proposed structure of the high-pH form of sulfite oxidase. Treatment of [MoO(2)(OSiPh(3))(2)] with Li(2)(bdt) in THF affords [MoO(2)(OSiPh(3))(bdt)](1-) (8). Reaction of 8 with 2,4,6-Pr(i)(3)C(6)H(2)SH in acetonitrile gives [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (9, 55%). Complexes 8 and 9 are square pyramidal with apical and basal oxo ligands. With one dithiolene and one thiolate ligand of a square pyramidal Mo(VI)O(2)S(3) coordination unit, 9 closely resembles the oxidized sites in sulfite oxidase and assimilatory nitrate reductase as deduced from crystallography (sulfite oxidase) and Mo EXAFS. The complex is the first structural analogue of the active sites in fully oxidized members of the sulfite oxidase family. This work provides a starting point for the development of both structural and reactivity analogues of members of this family.  相似文献   

14.
Investigation of the aqueous coordination chemistry for citrate and molybdenum(VI) resulted in the isolation of molybdenum(VI) citrato monomeric raceme and dimer K4[MoO3(cit)].2H2O (1) and K4[(MoO2)2O(Hcit)2].4H2O (2) (H4cit = citric acid). Complex 1 can serve as the first structurally characterized monomeric citrato molybdate and may represent an early mobilized precursor in the biosynthesis of FeMo-co (FeMo-cofactor). The two complexes have been characterized by elemental analyses and IR and NMR spectroscopies. The IR and NMR spectra are consistent with a monomeric species or a monooxo-bridged dinuclear structure, as revealed by a single crystal X-ray diffraction study. Compound 1 is monoclinic space group P2(1)/c with a = 7.225(1) A, b = 9.151(2) A, c = 22.727(2) A, beta = 94.93(1) degrees, V = 1497.1(7) A3, and Z = 4. Full-matrix least-squares refinement resulted in residuals of R = 0.027 and Rw = 0.032. The molybdenum atom forms an octahedral coordination with three oxo groups and one tridentate citrate, in which the latter is coordinated through the alkoxy and vicinal carboxyl and much more weakly by one of the two terminal groups [2.411(3) A]. Compound 2 is triclinic space group P1 with a = 8.2728(8) A, b = 8.9514(8) A, c = 10.0605(9) A, alpha = 101.673(8) degrees, beta = 100.672(7) degrees, gamma = 112.938(7) degrees, V = 642.5(3) A3, and Z = 1. Full-matrix least-squares refinement resulted in residuals of R = 0.033 and Rw = 0.039. The complex anion contains a linear (O2Mo)O(MoO2) core with the bridging oxo group lying at the center of inversion symmetry (Mo-Ob-Mo, 180 degrees). Each citrate ligand is three-coordinated to one molybdenum atom through the deprotonated hydroxy, alpha-carboxyl, and one beta-carboxyl group, making each metal atom six-coordinate.  相似文献   

15.
The monomer molybdenum(VI) complex [MoO(2)(napoxlhH(2))].2H(2)O (1) has been synthesized from the reaction of MoO(2)(acac)(2) with bis(2-hydroxy-1-naphthaldehyde)oxaloyldihydrazone (napoxlhH(4)) in 1:1 molar ratio in ethanol under reflux. This complex on reaction with pyridine/3-picoline/4-picoline yielded the dimer molybdenum(VI) complexes [Mo(2)O(4)(napoxlhH(2))(2)(A)(2)].2H(2)O (A=py (2), 3-pic (3), 4-pic (4)), whereas reaction with isonicotinoylhydrazine (inhH(3)) and salicyloylhydrazine (sylshH(3)) lead to the reduction of the metal centre yielding monomeric molybdenum(V) complexes [Mo(napoxlhH(2))(hzid)].2H(2)O (where hzidH(3)=inhH(3) (5) and sylshH(3) (6)). The complexes have been characterized by elemental analyses, molecular weight determinations, molar conductance data, magnetic moment data, electronic, IR, ESR and (1)H NMR spectroscopic studies. The complexes (5) and (6) are paramagnetic to the extent of one unpaired electron. The electronic spectra of the complexes are dominated by strong charge transfer bands. In all of the complexes, the principal dihydrazone ligand has been suggested to coordinate to the metal centres in the anti-cis-configuration. The complexes (1), (5) and (6) are suggested to have six-coordinate octahedral stereochemistry around molybdenum(VI) and molybdenum(V) metal centres, respectively, while the complexes (2)-(4) are suggested to have eight coordinate dodecahedral stereochemistry around molybdenum(VI) metal centre.  相似文献   

16.
A series of models for the active site (H-cluster) of the iron-only hydrogenase enzymes (Fe-only H2-ases) were prepared. Treatment of MeCN solutions of Fe2(SR)2(CO)6 with 2 equiv of Et4NCN gave [Fe2(SR)2(CN)2(CO)4](2-) compounds. IR spectra of the dicyanides feature four nu(CO) bands between 1965 and 1870 cm(-1) and two nu(CN) bands at 2077 and 2033 cm(-1). For alkyl derivatives, both diequatorial and axial-equatorial isomers were observed by NMR analysis. Also prepared were a series of dithiolate derivatives (Et4N)2[Fe2(SR)2(CN)2(CO)4], where (SR)2 = S(CH2)2S, S(CH2)3S. Reaction of Et4NCN with Fe2(S-t-Bu)2(CO)6 gave initially [Fe2(S-t-Bu)2(CN)2(CO)4](2-), which comproportionated to give [Fe2(S-t-Bu)2(CN)(CO)5](-). The mechanism of the CN(-)-for-CO substitution was probed as follows: (i) excess CN(-) with a 1:1 mixture of Fe2(SMe)2(CO)6 and Fe2(SC6H4Me)2(CO)6 gave no mixed thiolates, (ii) treatment of Fe2(S2C3H6)(CO)6 with Me3NO followed by Et4NCN gave (Et4N)[Fe2(S2C3H6)(CN)(CO)5], which is a well-behaved salt, (iii) treatment of Fe2(S2C3H6)(CO)6 with Et4NCN in the presence of excess PMe3 gave (Et4N)[Fe2(S2C3H6)(CN)(CO)4(PMe3)] much more rapidly than the reaction of PMe3 with (Et4N)[Fe2(S2C3H6)(CN)(CO)5], and (iv) a competition experiment showed that Et4NCN reacts with Fe2(S2C3H6)(CO)6 more rapidly than with (Et4N)[Fe2(S2C3H6)(CN)(CO)5]. Salts of [Fe2(SR)2(CN)2(CO)4](2-) (for (SR)2 = (SMe)2 and S2C2H4) and the monocyanides [Fe2(S2C3H6)(CN)(CO)5](-) and [Fe2(S-t-Bu)2(CN)(CO)5](-) were characterized crystallographically; in each case, the Fe-CO distances were approximately 10% shorter than the Fe-CN distances. The oxidation potentials for Fe2(S2C3H6)(CO)4L2 become milder for L = CO, followed by MeNC, PMe3, and CN(-); the range is approximately 1.3 V. In water,oxidation of [Fe2(S2C3H6)(CN)2(CO)4](2-) occurs irreversibly at -0.12 V (Ag/AgCl) and is coupled to a second oxidation.  相似文献   

17.
The X-ray absorption spectra at the molybdenum and selenium K-edges and the tungsten L2,3-edges are acquired for a set of 14 Mo(IV) and W(IV,VI) bis(dithiolene) complexes related to the active sites of molybdo- and tungstoenzymes. The set includes square pyramidal [MoIVL(S2C2Me2)2]- (L = O2-, R3SiO-, RO-, RS-, RSe-) and [WIV(OR)(S2C2Me2)2]-, distorted trigonal prismatic [MoIV(CO)(SeR)(S2C2Me2)2]- and [WIV(CO)L(S2C2Me2)2]- (L = RS-, RSe-), and distorted octahedral [WVIO(OR)(S2C2Me2)2]-. The dithiolene simulates the pterin-dithiolene cofactor ligand, and L represents a protein ligand. Bond lengths are determined by EXAFS analysis using the GNXAS protocol. Normalized edge spectra, non-phase-shift-corrected Fourier transforms, and EXAFS data and fits are presented. Bond lengths determined by EXAFS and X-ray crystallography agree to < or = 0.02 A as do the M-Se distances determined by both metal and selenium EXAFS. The complexes [MoIV(QR)(S2C2Me2)2]- simulate protein ligation by the DMSO reductase family of enzymes, including DMSO reductase itself (Q = O), dissimilatory nitrate reductase (Q = S), and formate dehydrogenase (Q = Se). Edge shifts of these complexes correlate with the ligand electronegativities. Terminal ligand binding is clearly distinguished in the presence of four Mo-S(dithiolene) interactions. Similarly, five-coordinate [ML(S2C2Me2)2]- and six-coordinate [M(CO)L(S2C2Me2)2]- are distinguishable by edge and EXAFS spectra. This study expands a previous XAS investigation of bis(dithiolene)metal(IV,V,VI) complexes (Musgrave, K. B.; Donahue, J. P.; Lorber, C.; Holm, R. H.; Hedman, B.; Hodgson, K. O. J. Am. Chem. Soc. 1999, 121, 10297) by including a larger inventory of molecules with variant physiologically relevant terminal ligation. The previous and present XAS results should prove useful in characterizing and refining metric features and structures of enzyme sites.  相似文献   

18.
The hetero-metal clusters [h5-C5H4C(O)CH2CH2C(O)OCH3]FeCoM(m3-S)(CO)8 (M = Mo 1, M = W 2) were prepared by thermal reactions of FeCo2(CO)9(m3-S) with metal exchange reagent [h5-C5H4C(O)CH2CH2C(O)OCH3]M(CO)3Na (M = Mo or W) in THF. Cluster 1 reacted with 2,4-dinitrophenylhydrazine at room temperature to yield the cluster hydrazone derivative (m3-S)CoFeMo(CO)8[h5-C5H4C(NR)Me] [R = NHC6H3-2,4-(NO2)2] 3. All the compounds were characterized by elemental analyses, IR and NMR spectra. Cluster 1 was determined by single crystal X-ray diffraction. Crystal data: C18H11O11SCoFeMo, Mr = 646.05, triclinic, space group P_1, a = 8.148(2), b = 10.685(3), c = 13.410(4) ?, a = 100.077(5), b = 102.452(5), g = 91.108(6)°, V = 1120.4(5) ?3, Z = 2, Dc = 1.915 g/cm3, F(000) = 636, m = 2.071 mm-1, the final R = 0.0378 and wR = 0.0968 for 5074 observations with (I > 2s(I)).  相似文献   

19.
Molybdenum-oxo ions of the type [Mo(IV)OL(4)Cl](+) (L = CNBu(t), PMe(3), (1)/(2)Me(2)PCH(2)CH(2)PMe(2)) have been studied by X-ray crystallography, vibrational spectroscopy, and polarized single-crystal electronic absorption spectroscopy (300 and ca. 20 K) in order to investigate the effects of the ancillary ligand geometry on the properties of the MotriplebondO bond. The idealized point symmetries of the [Mo(IV)OL(4)Cl](+) ions were established by X-ray crystallographic studies of the salts [MoO(CNBu(t)())(4)Cl][BPh(4)] (C(4)(v)), [MoO(dmpe)(2)Cl]Cl.5H(2)O (C(2)(v)), and [MoO(PMe(3))(4)Cl][PF(6)] (C(2)(v)()); the lower symmetries of the phosphine derivatives are the result of the steric properties of the phosphine ligands. The Motbd1;O stretching frequencies of these ions (948-959 cm(-)(1)) are essentially insensitive to the nature and geometry of the equatorial ligands. In contrast, the electronic absorption bands arising from the nominal d(xy)() --> d(xz), d(yz) (n --> pi(MoO)) ligand-field transition exhibit a large dependence on the geometry of the equatorial ligands. Specifically, the electronic spectrum of [MoO(CNBu(t)())(4)Cl](+) exhibits a single (1)[n --> pi(xz)(,)(yz)] band, whereas the spectra of both [MoO(dmpe)(2)Cl](+) and [MoO(PMe(3))(4)Cl](+) reveal separate (1)[n --> pi(xz)] and (1)[n --> pi(yz)] bands. A general theoretical model of the n --> pi state energies of structurally distorted d(2) M(triplebondE)L(4)X chromophores is developed in order to interpret the electronic spectra of the phosphine derivatives. Analysis of the n --> pi transition energies using this model indicates that the d(xz) and d(yz) pi(MotriplebondO) orbitals are nondegenerate for the C(2)(v)-symmetry ions and the n --> pi(xz) and n --> pi(yz) excited states are characterized by different two-electron terms. These effects lead to a significant redistribution of intensity between certain spin-allowed and spin-forbidden absorption bands. The applicability of this model to the excited states produced by delta --> pi and pi --> delta symmetry electronic transitions of other chromophores is discussed.  相似文献   

20.
1 INTRODUCTION A new class of materials of metal oxide clusters based on anionic molybdenum phosphate frameworks has received much attention as a consequence of their potential applications in catalysis and materials science [1]. As a result, some molybdenum phosphates have been studied [2,3]. Recently we have studied the structure of NaPMO material[4] and the spectrum of multicomponent compound with Keggin struc- ture [5]. Here we report the synthesis and crystal structure of a new…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号