首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linear higher-grade higher-order elastic constitutive laws for compatible (defect-free) and incompatible (containing crystal line defects) media are presented. In the proposed model, the free energy density of a body subjected to elastic deformation under the action of surface tractions, moments or hyper-traction tensors (second-order tensors whose anti-symmetric part corresponds to moments) has contributions coming from the first two gradients of displacements. Thermodynamic considerations reveal that only the symmetric component of the gradient of elastic displacement, i.e., compatible elastic strain tensor, and the anti-symmetric component of the second gradient of elastic displacement, i.e., compatible third-order elastic curvature tensor, contribute to the free energy density during compatible deformation of the body. The line crystal defect contributions are accounted for by incorporating the incompatible components of elastic strains, curvatures and symmetric 2-distortions as state variables of the free energy density. In particular, the presence of generalized disclinations (G-disclinations) is acknowledged when the medium is subjected to surface hyper-traction tensors having a non-zero symmetric component along with surface-tractions on its boundary. Mechanical dissipation analysis provides for the coupling between the Cauchy stresses and third-order symmetric hyper-stresses. The free energy density and elastic laws for a defect-free and line crystal defected medium are proposed in a linear setting. In the special case of isotropy, the cross terms between elastic strains and curvatures contribute to the free energy density through a single elastic constant. More interestingly, the Cauchy and couple stresses are found to have contributions coming from both, elastic strains and curvatures.  相似文献   

2.
Markus Lazar 《Physics letters. A》2010,374(30):3092-3098
We investigate the nonuniform motion of a straight screw dislocation in infinite media in the framework of the translational gauge theory of dislocations. The equations of motion are derived for an arbitrarily moving screw dislocation. The fields of the elastic velocity, elastic distortion, dislocation density and dislocation current surrounding the arbitrarily moving screw dislocation are derived explicitly in the form of integral representations. We calculate the radiation fields and the fields depending on the dislocation velocities.  相似文献   

3.
4.
We develop a method to derive the macroscopic equations governing the evolution of the mean field in continuous turbulent media. The approach is based on the concept of local equilibrium, which enables one to evaluate averages of nonlinear terms and to close the averaged equation. Examples include the Kuramoto-Sivashinsky equation and its modifications.  相似文献   

5.
6.
We develop a multi-length-scale (multifractal) theory for the effect of rock heterogeneity on the growth of the mixing layer of the flow of a passive tracer through porous media. The multifractal exponent of the size of the mixing layer is determined analytically from the statistical properties of a random velocity (permeability) field. The anomalous diffusion of the mixing layer can occur both on finite and on asymptotic length scales.  相似文献   

7.
A new method is proposed to estimate arbitrary velocity fields from a time series of images acquired by a single camera. This approach, here focused on a single spatial plus a time dimension, is specialized to the decomposition of the velocity field over rectangular shaped (finite-element) bilinear shape functions. It is therefore assumed that the velocity field is essentially aligned along one direction. The use of a time sequence over which the velocity is assumed to have a smooth temporal change allows one to use elements whose spatial extension is much smaller than in traditional digital image correlation based on successive image pairs. This method is first qualified by using synthetic numerical test cases, and then applied to a dynamic tensile test performed on a tantalum specimen. Improvements with respect to classical digital image correlation techniques are observed in terms of spatial resolution.  相似文献   

8.
This review covers structural, electronic, and hydrogen storage properties of carbon-based materials with doped metals under electric fields with different orientations and intensities, which are determined by density functional theory (DFT) simulations. The special application case is considered in investigating variations of electronic structures, binding, and hydrogen storage properties. External fields that are often met in practical applications lead to changes of the above properties.  相似文献   

9.
We will utilise the self-avoiding walk (SAW) mapping of the vortex line conformations in turbulence to get the Kolmogorov scale dependence of energy dispersion from SAW statistics, and the knowledge of the effects of disordered fractal geometries on the SAW statistics. These will give us the Kolmogorov energy dispersion exponent value for turbulence in porous media in terms of the size exponent for polymers in the same. We argue that the exponent value will be somewhat less than for turbulence in porous media.  相似文献   

10.
Although extensively studied within the lidar community, the multiple scattering phenomenon has always been considered a rare curiosity by radar meteorologists. Up to few years ago its appearance has only been associated with two- or three-body-scattering features (e.g. hail flares and mirror images) involving highly reflective surfaces.Recent atmospheric research aimed at better understanding of the water cycle and the role played by clouds and precipitation in affecting the Earth's climate has driven the deployment of high frequency radars in space. Examples are the TRMM 13.5 GHz, the CloudSat 94 GHz, the upcoming EarthCARE 94 GHz, and the GPM dual 13-35 GHz radars. These systems are able to detect the vertical distribution of hydrometeors and thus provide crucial feedbacks for radiation and climate studies. The shift towards higher frequencies increases the sensitivity to hydrometeors, improves the spatial resolution and reduces the size and weight of the radar systems. On the other hand, higher frequency radars are affected by stronger extinction, especially in the presence of large precipitating particles (e.g. raindrops or hail particles), which may eventually drive the signal below the minimum detection threshold. In such circumstances the interpretation of the radar equation via the single scattering approximation may be problematic. Errors will be large when the radiation emitted from the radar after interacting more than once with the medium still contributes substantially to the received power. This is the case if the transport mean-free-path becomes comparable with the instrument footprint (determined by the antenna beam-width and the platform altitude).This situation resembles to what has already been experienced in lidar observations, but with a predominance of wide- versus small-angle scattering events. At millimeter wavelengths, hydrometeors diffuse radiation rather isotropically compared to the visible or near infrared region where scattering is predominantly in the forward direction. A complete understanding of radiation transport modeling and data analysis methods under wide-angle multiple scattering conditions is mandatory for a correct interpretation of echoes observed by space-borne millimeter radars.This paper reviews the status of research in this field. Different numerical techniques currently implemented to account for higher order scattering are reviewed and their weaknesses and strengths highlighted. Examples of simulated radar backscattering profiles are provided with particular emphasis given to situations in which the multiple scattering contributions become comparable or overwhelm the single scattering signal. We show evidences of multiple scattering effects from air-borne and from CloudSat observations, i.e. unique signatures which cannot be explained by single scattering theory. Ideas how to identify and tackle the multiple scattering effects are discussed. Finally perspectives and suggestions for future work are outlined.This work represents a reference-guide for studies focused at modeling the radiation transport and at interpreting data from high frequency space-borne radar systems that probe highly opaque scattering media such as thick ice clouds or precipitating clouds.  相似文献   

11.
Discussed is the propagation of optical beams in non-local nonlinear media modelled by 1 + 1D non-local nonlinear Schrödinger equation (NNLSE). In the sub-strongly non-local case, an approximate analytical solution is obtained for an arbitrary response function by a variational approach. Described by a combination of the Jacobian elliptic functions, the solution is periodic, and its period depends on not only the input power but also the initial beam width, which is confirmed by the numerical simulation of the NNLSE.  相似文献   

12.
We present a pedagogical overview of flux compactifications in string theory, from the basic ideas to the most recent developments. We concentrate on closed-string fluxes in type-II theories. We start by reviewing the supersymmetric flux configurations with maximally symmetric four-dimensional spaces. We then discuss the no-go theorems (and their evasion) for compactifications with fluxes. We analyze the resulting four-dimensional effective theories, as well as some of its perturbative and non-perturbative corrections, focusing on moduli stabilization. Finally, we briefly review statistical studies of flux backgrounds.  相似文献   

13.
We consider the existence of Einstein-Maxwell-dilaton plus fluid systems for the case of stationary cylindrically symmetric spacetimes. An exact inhomogeneous -order solution is found, where the parameter parametrizes the non-minimally coupled electromagnetic field. Some its physical attributes are investigated and a connection with the already known Gödel-type solution is given. It is shown that our solution also survives in the string-inspired charged gravity framework. We find that a magnetic field has positive influence on the chronology violation unlike the dilaton influence.  相似文献   

14.
15.
This paper attempts to review the most important works on numerical simulation of processes in electrostatic precipitators published so far. Only the wire-plate configuration is considered, although the discharge electrode may have different geometries: smooth cylinder, barbed wire of different shape or helical electrode. Different mathematical models and numerical algorithms for gas flow, electric field, corona discharge and particle transport have been compared. The discussion is focused on coupling between different phenomena. A continuous progress has been shown from early works published about 30 years ago, which dealt with much idealized models of the problem, to recent publications, where the numerical predictions show close agreement with the experimental data.  相似文献   

16.
Raman spectroscopy is a novel method of food analysis and inspection. It is highly accurate, quick, and noninvasive. The investigation and monitoring of food processing is important because most of the foods humans eat today are processed in various ways. In this article, the use of Raman spectroscopy in food processes, such as fermentation, cooking, processed food manufacturing, and so on, are explored. The characteristics and difficulties of the Raman inspection of these processes are also discussed. According to the various research reports, Raman spectroscopy is a very powerful tool for monitoring these food processes in lab environments and is likely to see usage in situ in the future.  相似文献   

17.
Ultrasonic processing of a variety of liquids, drinks and beverages has generated much interest with published literature papers increasing within this area in recent years. Benefits include enhanced emulsification with improved homogenization and fat globule size reduction being recorded. In dairy systems increased creaming rates are observed on sonication in a process known as fractionation. Whilst fruit juices exhibit retention or enhancement of quality parameters whilst increasing levels of bioactive compounds. Sterilization of liquids is a large feature of ultrasonic treatment with microbial activity of a range of fruit juices being monitored over time as increased stability and reduced spoilage is observed. Progress has also been made towards scale up of ultrasonic processes with several examples of batch and continuous processes being studied with reduced processing times and temperatures being quoted as a result of ultrasonic treatment. This short review covers the effect of sonication on liquids and beverages with a specific focus towards dairy and fruit juices and covers emulsification, fractionation, sterilization and some pilot scale initiatives.  相似文献   

18.
R. Srinivasan 《Pramana》2006,66(1):3-30
Rotating dilute Bose-Einstein condensates (BEC) of alkali atoms offer a testing ground for theories of vortices in weakly interacting superfluids. In a rotating super-fluid, quantised vortices, with a vorticity h/m, form above a critical velocity. Such vortices have been generated in BEC of alkali atoms by different techniques such as (a) wave function engineering of a two-component BEC, (b) decay of solitons, (c) rotation of a thermal cloud before cooling it below the condensation temperature, (d) stirring with an ‘optical’ spoon, (e) rotating a deformation in the anisotropic trap in which the condensate is trapped and (f) by creating Berry phase by adiabatically reversing the axial magnetic field. Since the core of a vortex is a fraction of a micrometer in diameter, it cannot be directly imaged optically. The condensate with vortices is allowed to ballistically expand till the size increases by one order before the vortices are imaged. Surface wave spectroscopy and the change in aspect ratio of a rotating cloud are the other techniques used. Studies have been made on the creation and dynamics of single vortex and on systems with more than a hundred vortices. Results have been obtained on vortex nucleation, stability of vortex structures, nature of the vortex lattice and defects in such a lattice. Important results are: (a) evidence exists that vortex nucleation takes place by a surface mode instability; but this is not the only mechanism; (b) the vortex lattice is perfectly triangular right up to the edge; (c) in the initial stages of rotation of the cloud a tangled web of vortices is seen; it takes a few hundred milliseconds before the vortices arrange themselves in a lattice; this time appears to be independent of temperature; (d) the decay of vortices appears to arise from the transfer of energy to the rotating thermal component and is dependent on temperature; (e) defects in the lattices such as dislocations and grain boundaries are seen; (f) transverse oscillations (Tkachenko modes) of the vortex lattice have been observed; and (g) giant vortices have been produced. These will be discussed.  相似文献   

19.
Reserch indicates significant contribution of extrinsic laryngeal mechanisms to voice production. This article reviews the major theories of the role of the external laryngeal factors in voice production and relevant experimental data. The review suggests that partly neglected external factors and possibly even misinterpretation of some of the recently documented individual variation in physiological data may have unnecessarily complicated the issues pertaining to the interplay between the physiological mechanisms of the larynx. The implications of contemporary findings and documentation in the modeling of the extrinsic factors are discussed and a synthesis of empirical data into two simple models of the extrinsic forces of pitch control is presented. Also suggested by the review, a basic principle, probably underlying the laryngeal control of phonation, is put forward.  相似文献   

20.
Because of the merits of non-destruction, high speed, and high sensitivity, optical techniques have been developed for experimental mechanics and optical measurement. In commercial optical systems, the speed performance becomes more important and real-time systems are pursued. Among many acceleration methods, using parallel computing hardware is proven effective. In this paper, the main principles of parallel computing at an application level are introduced; the hardware platforms that support parallel computing are compared; the applications of parallel computing in experimental mechanics and optical measurement are reviewed. Parallel hardware platforms are seen to be useful for the acceleration of various problems. When the computation is time-consuming or real-time performance is required, hardware acceleration is a possible approach for consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号