首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experiments conducted in several countries have shown that the improvement of machining quality can be promoted through conversion of the cutting process into one involving controllable high-frequency vibration at the cutting zone. This is achieved through the generation and maintenance of ultrasonic vibration of the cutting tool to alter the fracture process of work-piece material cutting to one in which loading of the materials at the tool tip is incremental, repetitive and controlled. It was shown that excitation of the high-frequency vibro-impact mode of the tool-workpiece interaction is the most effective way of ultrasonic influence on the dynamic characteristics of machining. The exploitation of this nonlinear mode needs a new method of adaptive control for excitation and stabilisation of ultrasonic vibration known as autoresonance. An approach has been developed to design an autoresonant ultrasonic cutting unit as an oscillating system with an intelligent electronic feedback controlling self-excitation in the entire mechatronic system. The feedback produces the exciting force by means of transformation and amplification of the motion signal. This allows realisation for robust control of fine resonant tuning to bring the nonlinear high Q-factor systems into technological application. The autoresonant control provides the possibility of self-tuning and self-adaptation mechanisms for the system to keep the nonlinear resonant mode of oscillation under unpredictable variation of load, structure and parameters. This allows simple regulation of intensity of the process whilst keeping maximum efficiency at all times. An autoresonant system with supervisory computer control was developed, tested and used for the control of the piezoelectric transducer during ultrasonically assisted cutting. The system has been developed as combined analog-digital, where analog devices process the control signal, and parameters of the devices are controlled digitally by computer. The system was applied for advanced machining of aviation materials.  相似文献   

2.
In metal cutting machining, major factors that affect the cutting tool life are machine tool vibrations, tool tip/chip temperature and surface roughness along with machining parameters like cutting speed, feed rate, depth of cut, tool geometry, etc., so it becomes important for the manufacturing industry to find the suitable levels of process parameters for obtaining maintaining tool life. Heat generation in cutting was always a main topic to be studied in machining. Recent advancement in signal processing and information technology has resulted in the use of multiple sensors for development of the effective monitoring of tool condition monitoring systems with improved accuracy. From a process improvement point of view, it is definitely more advantageous to proactively monitor quality directly in the process instead of the product, so that the consequences of a defective part can be minimized or even eliminated.In the present work, a real time process monitoring method is explored using multiple sensors. It focuses on the development of a test bed for monitoring the tool condition in turning of AISI 316L steel by using both coated and uncoated carbide inserts. Proposed tool condition monitoring (TCM) is evaluated in the high speed turning using multiple sensors such as Laser Doppler vibrometer and infrared thermography technique. The results indicate the feasibility of using the dominant frequency of the vibration signals for the monitoring of high speed turning operations along with temperatures gradient. A possible correlation is identified in both regular and irregular cutting tool wear. While cutting speed and feed rate proved to be influential parameter on the depicted temperatures and depth of cut to be less influential. Generally, it is observed that lower heat and temperatures are generated when coated inserts are employed. It is found that cutting temperatures are gradually increased as edge wear and deformation developed.  相似文献   

3.
《Physics letters. A》2005,342(4):299-304
Based on Lyapunov stabilization theory, an adaptive controller with parameters identification for a class of chaotic systems with unknown parameters is proposed in this Letter. The proposed control scheme is successfully applied to some typical chaotic systems, which can be spilt into two terms: one is the term with known states, the other is the symmetric matrix term with unknown parameters, such as Lorenz system. And with the proposed adaptive control law, the two unified systems with unknown parameter are also to be synchronized. Simulation results verify the proposed scheme's effectiveness.  相似文献   

4.
A detailed analysis of the airborne sound emitted in the cut-off grinding of concrete with a diamond grinding disk is presented. It is shown that the frequency spectra of airborne sound emitted in the cutting process contain detailed information about the process conditions. As long as the machining parameters are appropriate for the work piece, the airborne sound spectra show statistically excited natural frequencies and turning frequencies. In this case the total signal level gives sufficient evidence of the work piece composition and machinability. The effects of inappropriate machining parameters, like tool deflection or very high friction forces acting on the tool, can be identified by means of distinct frequencies in the airborne sound spectra. In addition, the emitted airborne sound can be used to image the structure of the flat joint surface, which cannot be determined by another method. With regard to everyday applications, the results obtained by this procedure can be used to apply airborne sound analysis systems to machines and detect process parameters which are overstressing the cutting tool.  相似文献   

5.
This paper presents an effective approach for the optimization of laser cutting process of St-37 steel with multiple performance characteristics based on the grey relational analysis. Sixteen experimental runs based on the Taguchi method of orthogonal arrays were performed to determine the best factor level condition. The response table and response graph for each level of the machining parameters were obtained from the grey relational grade. In this study, the laser cutting parameters such as laser power and cutting speed are optimized with consideration of multiple-performance characteristics, such as workpiece surface roughness, top kerf width and width of heat affected zone (HAZ). By analyzing the grey relational grade, it is observed that the laser power has more effect on responses rather than cutting speed. It is clearly shown that the above performance characteristics in laser cutting process can be improved effectively through this approach.  相似文献   

6.
Govekar E  Gradisek J  Grabec I 《Ultrasonics》2000,38(1-8):598-603
Monitoring of a machining process on the basis of sensor signals requires a selection of informative inputs in order to reliably characterize and model the process. In this article, a system for selection of informative characteristics from signals of multiple sensors is presented. For signal analysis, methods of spectral analysis and methods of nonlinear time series analysis are used. With the aim of modeling relationships between signal characteristics and the corresponding process state, an adaptive empirical modeler is applied. The application of the system is demonstrated by characterization of different parameters defining the states of a turning machining process, such as: chip form, tool wear, and onset of chatter vibration. The results show that, in spite of the complexity of the turning process, the state of the process can be well characterized by just a few proper characteristics extracted from a representative sensor signal. The process characterization can be further improved by joining characteristics from multiple sensors and by application of chaotic characteristics.  相似文献   

7.
Many brittle materials, such as single-crystal materials, amorphous materials, and ceramics, are widely used in many industries such as the energy industry, aerospace industry, and biomedical industry. In recent years, there is an increasing demand for high-precision micro-machining of these brittle materials to produce precision functional parts. Traditional ultra-precision micro-machining can lead to workpiece cracking, low machined surface quality, and reduced tool life. To reduce and further solve these problems, a new micro-machining process is needed. As one of the nontraditional machining processes, rotary ultrasonic machining is an effective method to reduce the issues generated by traditional machining processes of brittle materials. Therefore, rotary ultrasonic micro-machining (RUμM) is investigated to conduct the surface micro-machining of brittle materials. Due to the small diameter cutting tool (<500 μm) and high accuracy requirements, the impact of input parameters in the rotary ultrasonic surface micro-machining (RUSμM) process on tool deformation and cutting quality is extremely different from that in rotary ultrasonic surface machining (RUSM) with relatively large diameter cutting tool (∼10 mm). Up till now, there is still no investigation on the effects of ultrasonic vibration (UV) and input variables (such as tool rotation speed and depth of cut) on cutting force and machined surface quality in RUSμM of brittle materials. To fill this knowledge gap, rotary ultrasonic surface micro-machining of the silicon wafer (one of the most versatile brittle materials) was conducted in this study. The effects of ultrasonic vibration, tool rotation speed, and depth of cut on tool trajectory, material removal rate (MRR), cutting force, cutting surface quality, and residual stress were investigated. Results show that the ultrasonic vibration could reduce the cutting force, improve the cutting surface quality, and suppress the residual compressive stress, especially under conditions with high tool rotation speed.  相似文献   

8.
A four-dimensional hyperchaotic system with five parameters is proposed. Its dynamical properties such as dissipativity, equilibrium points, Lyapunov exponent, Lyapunov dimension, bifurcation diagrams and Poincare maps are analyzed theoretically and numerically. Theoretical analyses and simulation tests indicate that the new system's dynamics behavior can be periodic attractor, chaotic attractor and hyperchaotic attractor as the parameter varies. Finally, the circuit of this new hyperchaotic system is designed and realized by Multisim software. The simulation results confirm that the chaotic system is different from the existing chaotic systems and is a novel hyperchaotic system. The system is recommendable for many engineering applications such as information processing, cryptology, secure communications, etc.  相似文献   

9.
光学器件和光学测量系统的关键部件主要通过超精密加工制造。铝合金具有很多优势,通常用于光子产业。光学领域对铝合金使用和需求的不断增加,促进了在铸造过程中采用快速凝固技术对铝合金等级重新改良的发展。优异的微观结构和改进的机械和物理性能是新型铝合金等级的特点。目前主要问题在于采用金刚石车削时,由于在切削性方面缺乏对铝合金性能的充分研究,导致机械加工数据库非常有限。本文通过改变金刚石的切削参数,测量切齿安装距超过4km时金刚石刀具的磨损,研究了快速凝固铝合金RSA 905的切削性能。改变的机械加工参数为切削速度、进给速度和切削深度。结果表明切削速度对金刚石刀具的磨损影响最大。主轴转速为500rpm、进给速度为25mm/min、切削深度为15μm时,刀具磨损达到最大值12.2μm;主轴转速为1750rpm、进给速度为5mm/min、切削深度为5μm时,刀具磨损达到最小值2.45μm。通常,较高的切削速度、较低的进给速度和较短的切削深度的组合可以减少金刚石刀具磨损。建立了模型统计以分析金刚石刀具磨损。通过该模型可以生成磨损图,从而确定切削参数产生最小磨损的区域。结果证明,快速凝固铝是更好的选择,为机械工程师使用这种材料提供了参考。  相似文献   

10.
非线性自治系统频率特性及其利用   总被引:5,自引:0,他引:5       下载免费PDF全文
张晓明  彭建华  张入元 《物理学报》2002,51(11):2467-2474
用数值模拟方法对三维非线性混沌系统进行了分析,发现衰减项参量的变化基本不影响系统的周期(指在同一周期内),并且系统基频与分频(基本周期与倍周期)之间还存在着近似的简单倍数关系.另外,还将Hopf分支理论中的实用分析方法应用到某些系统,解析地确定出系统开始出现稳定周期解(分岔)的临界位置、基本周期的近似值及分岔方向等有关特征量.进一步利用确定系统基本周期的方法以及基本周期和其他周期关系的规律,讨论了变量延迟反馈法控制混沌的两个实例 关键词: 自治系统 基本周期(频率) Hopf分支 混沌控制  相似文献   

11.
This paper studies the adaptive complete synchronization of chaotic and hyperchaotic systems with fully unknown parameters. In practical situations, some systems' parameters cannot be exactly known a priori, and the uncertainties often affect the stability of the process of synchronization of the chaotic oscillators. An adaptive scheme is proposed to compensate for the effects of parameters' uncertainty based on the structure of chaotic systems in this paper. Based on the Lyapunov stability theorem, an adaptive controller and a parameters update law can be designed for the synchronization of chaotic and hyperchaotic systems. The drive and response systems can be nonidentical, even with different order. Three illustrative examples are given to demonstrate the validity of this technique, and numerical simulations are also given to show the effectiveness of the proposed chaos synchronization method. In addition, this synchronization scheme is quite robust against the effect of noise.  相似文献   

12.
A new kind of generalized synchronization of two chaotic systems with uncertain parameters is proposed. Based on a pragmatical asymptotical stability theorem and an assumption of equal probability for ergodic initial conditions, an adaptive control law is derived so that it can be proved strictly that the common null solution of error dynamics and of parameter dynamics is actually asymptotically stable, i.e. these two identical systems are in generalized synchronization and the estimated parameters approach the uncertain values. It is called pragmatical generalized synchronization. Finally, two numerical examples are studied for two Quantum-CNN oscillator chaotic systems to show the effectiveness of the proposed generalized synchronization strategy with a double Duffing chaotic system as a goal system.  相似文献   

13.
一类受扰混沌系统的自适应滑模控制   总被引:1,自引:0,他引:1       下载免费PDF全文
Li Xiu-Chun  徐伟  Xiao Yu-Zhu 《物理学报》2008,57(8):4721-4728
针对受扰混沌系统,在参数未知的情形下利用自适应滑模控制法实现了驱动系统和响应系统的鲁棒同步. 该方法几乎适用于所有的混沌系统,且无需知道系统外部干扰的上界,它由自适应控制律实现. 以双涡卷系统、Lorenz系统、Rssler超混沌系统为例,说明该方法的有效性和正确性. 关键词: 混沌同步 滑模面 到达条件 自适应滑模控制  相似文献   

14.
郑广超  刘崇新  王琰 《物理学报》2018,67(5):50502-050502
对于具有隐藏吸引子的混沌系统,既有文献大多只针对整数阶系统进行分析与控制研究.基于Sprott E系统,构建了仅有一个稳定平衡点的分数阶混沌系统,通过相位图、Poincare映射和功率谱等,分析了该系统的基本动力学特征.结果显示,该系统展现出了丰富而复杂的动力学特性,且通过随阶次变化的分岔图可知,系统在不同阶次下呈现出周期运动、倍周期运动和混沌运动等状态,这些动力学特征对于保密通信等实际工程领域有重要的研究价值.针对该具有隐藏吸引子的分数阶系统,应用分数阶系统有限时间稳定性理论设计控制器,对系统进行有限时间同步控制,并通过数值仿真验证了其有效性.  相似文献   

15.
魏伟  李东海  王京 《中国物理 B》2011,20(4):40510-040510
The chaos control of uncertain unified chaotic systems is considered. Cascade adaptive control approach with only one control input is presented to stabilize states of the uncertain unified chaotic system at the zero equilibrium point. Since an adaptive controller based on dynamic compensation mechanism is employed,the exact model of the unified chaotic system is not necessarily required. By choosing appropriate controller parameters,chaotic phenomenon can be suppressed and the response speed is tunable. Sufficient condition for the asymptotic stability of the approach is derived. Numerical simulation results confirm that the cascade adaptive control approach with only one control signal is valid in chaos control of uncertain unified chaotic systems.  相似文献   

16.
吴海勇 《应用声学》2020,39(4):598-610
声发射技术可以实现无氧铜切削加工特征的监测与评价。采用声发射技术监测单颗金刚石磨粒旋转切削无氧铜,利用G-P算法重构出声发射时域信号相空间,采用自相关函数法计算出相空间时间延迟参数,通过相空间双对数曲线的计算,得到不同切削工况下的关联维数。研究结果表明,进给速度和切削速度对声发射信号影响较不显著,切深与声发射信号振幅呈正效应关系;声发射信号双对数曲线呈现阶段性增加趋势,并逐渐收敛于饱和状态,关联维数随着嵌入维数的增加先快速下降后趋于平稳;金刚石切削无氧铜的声发射信号具有混沌运动变化特性,在较小嵌入维数时,关联维数与切深和切削速度呈现线性负效应关系,与进给速度呈现线性正效应关系。该研究为无氧铜的切削加工提供理论参考。  相似文献   

17.
武花干  陈胜垚  包伯成 《物理学报》2015,64(3):30501-030501
以光滑三次型磁控忆阻器的蔡氏电路为例, 研究了两个同构忆阻混沌系统的脉冲控制同步方法.基于Lyapunov稳定性理论, 给出了忆阻混沌系统的脉冲同步渐近稳定条件; 结合误差系统的最大条件Lyapunov指数谱, 讨论了系统初值对脉冲同步性能的影响, 并进行了相应的数值仿真实验.结果表明, 在合适的脉冲控制参数条件下, 同构的忆阻混沌系统的脉冲同步是可行而有效的; 忆阻混沌系统的初值对脉冲同步性能存在一定的影响, 但可通过增大脉冲耦合强度来抑制系统初值的影响.  相似文献   

18.
The synchronization problem for a general class of uncertain chaotic systems is addressed. The underlying systems may be perturbed by unknown time-varying parameters, unstructured uncertainties, and external disturbances. Meanwhile, the time-varying parameters and disturbances are neither required to be periodic nor to have known bounds. Assuming the disturbances are L(2) signals, an adaptive control incorporated with H(∞) control technique is employed to construct a robust adaptive synchronization algorithm. Then, removing such assumption, a novel adaptive-based method is developed to achieve the goal of synchronization. In order to demonstrate the effectiveness of the proposed algorithms, such methods are applied to solve the synchronization problem of uncertain chaotic Chua's circuits.  相似文献   

19.
《Physics letters. A》2005,334(4):295-305
This Letter presents an adaptive approach for synchronization of Takagi–Sugeno (T–S) fuzzy chaotic systems. Since the parameters of chaotic system are assumed unknown, the adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. The control law to be designed consists of two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples are given to demonstrate the validity of the proposed adaptive synchronization approach.  相似文献   

20.
Chaos can be observed in fractional-order nonlinear systems with appropriate orders. The knowledge about the parameters and orders are the basis of the control and synchronization of fractional-order chaotic systems. In this Letter, the problem of parameter identification of commensurate fractional-order chaotic systems is investigated. By treating the orders as additional parameters, the parameters and orders are identified together through minimizing an objective function. Differential evolution algorithm, a powerful and robust evolutionary algorithm, is applied to search the optimal solution of the objective function. Numerical simulations and comparisons with genetic algorithm (GA) demonstrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号