首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coalescence of a falling droplet with a stationary sessile droplet on a superhydrophobic surface is investigated by a combined experimental and numerical study. In the experiments, the droplet diameter, the impact velocity, and the distance between the impacting droplets were controlled. The evolution of surface shape during the coalescence of two droplets on the superhydrophobic surface is captured using high speed imaging and compared with numerical results. A two-phase volume of fluid (VOF) method is used to determine the dynamics of droplet coalescence, shape evaluation, and contact line movement. The spread length of two coalesced droplets along their original center is also predicted by the model and compared well with the experimental results. The effect of different parameters such as impact velocity, center to center distance, and droplet size on contact time and restitution coefficient are studied and compared to the experimental results. Finally, the wetting and the self-cleaning properties of superhydrophobic surfaces have been investigated. It has been found that impinging water drops with very small amount of kinetic impact energy were able to thoroughly clean these surfaces.  相似文献   

2.
In the current study, we used a high-speed camera system with particle image velocimetry to observe the internal fluidity of water droplets during sliding. The droplets' velocity during sliding was controlled by slipping and rolling motions. On the superhydrophobic surface, with a contact angle of 150 degrees, the droplet fell at high velocity by slipping. However, on a normal hydrophobic surface whose water contact angle was around 100 degrees, both slipping and rolling controlled the droplet's velocity during sliding. In addition, the advancing velocity might be large when the slip velocity is large and the contact area is small.  相似文献   

3.
The purpose of this paper is to present a consistent theoretical concept that can explain the various physical phenomena associated with the effect of droplet size on contact angle for droplets on solid surfaces, and with the geometry of the liquid/gas/solid contact line in general. Two droplet geometries have been considered: uniformly elongated droplets and axisymmetric droplets. It has been shown that the contact angle for elongated droplets is size-independent and, thus, satisfies the Young equation for constant material and interfacial properties. On the other hand, whereas the contact angle for axisymmetric droplets is size-dependent and does not satisfy the original Young equation, it is shown that this contact angle can still be predicted for any combination of droplet and substrate materials, and a given mass of the droplet. The theoretical work has been combined with the development of numerical schemes of solving the Laplace-Young equation for various droplet geometries. The proposed approach has been applied to different material/substrate combinations and validated against several sets of experimental data. As a result, a method has been developed for predicting the contact angle of both long and axisymmetric sessile droplets of arbitrary sizes for given liquid/solid/gas properties.  相似文献   

4.
Very small, discrete oil droplets can form at the solid-liquid interface. We demonstrate this effect through formation of decane droplets at the interface between an aqueous ethanol solution and silicon wafers that have been made hydrophobic through self-assembly of octadecyltrichlorosilane (OTS). The droplets have a lens-like shape; the shape is approximately a spherical cap with a contact angle < 25 degrees. The heights of the droplets are about 2-50 nm, and diameters at the three-phase boundary are about 100-600 nm in 25% ethanol solution. The size and contact angle can be varied by changing the ethanol concentration. The contact angle of the very small droplets (height < 20 nm) is similar to the contact angle of macroscopic droplets (height approximately equal to 1 mm), so the line tension is very small. The droplets are only stable for a few hours: they gradually lose mass, presumably through Ostwald ripening. The drop perimeter is not pinned during ripening but retreats across the solid. We form the droplets by direct adsorption from an emulsion; evidence for adsorption is obtained by comparing the drop volumes in bulk to the volumes at the interface. The droplet sizes are obtained by dynamic light scattering and atomic force microscopy.  相似文献   

5.
Phase change accompanying conversion of a saturated or superheated vapor in the presence of subcooled surfaces is one of the most common occurring phenomena in nature. The mode of phase change that follows such a transformation is dependent upon surface properties such as contact angle and thermodynamic conditions of the system. In present studies, an experimental approach is used to study the physics behind droplet growth on a partially wet surface. Superheated vapor at low pressures of 4-5 Torr was condensed on subcooled silicon surface with a static contact angle of 60° in the absence of noncondensable gases, and the condensation process was monitored using environmental scanning electron microscopy (ESEM) with sub-microscopic spatial resolution. The condensation process was analyzed in the form of size growth of isolated droplets before a coalescence event ended the regime of single droplet growth. Droplet growth obtained as a function of time reveals that the rate of growth decreases as the droplet increases in size. This behavior is indicative of an overall droplet growth law existing over larger time scales for which the current observations in their brief time intervals could be fitted. A theoretical model based on kinetic theory further support the experimental observations indicating a mechanism where growth occurs by interfacial mass transport directly on condensing droplet surface. Evidence was also found that establishes the presence of sub-microscopic droplets nucleating and growing between microscopic droplets for the partially wetting case.  相似文献   

6.
The motion of droplets on surfaces is crucial to the performance of a wide range of processes; this study examines the initiation of droplet motion through a shearing mechanism generated here by a controlled air flow. Systematic experiments are carried out for a range of fluids and well defined surfaces. A model is postulated that balances surface tension forces at the contact line and the drag force due to the air motion. Experiments reveal that the critical velocity at which droplet motion is initiated depends on the contact angle and the droplet size. Visualizations highlight three modes of motion: (I) the droplet retains a footprint similar to that at the point of motion; (II) a tail exists at the rear of the droplet; (III) a trail remains behind the droplet (that can shed smaller droplets). The predictions of droplet initiation velocity are good for type I motion, in accordance with the assumptions inherent within the model. This model confirms the dominant physics associated with the initiation of droplet motion and provides a useful predictive expression.  相似文献   

7.
Microfluidic devices were designed to electrochemically detect in a two‐phase flow the velocity, size and content of aqueous droplets containing redox species. The principle of these determinations is based on the analysis of a unique chronoamperometric response recorded during the passage of a droplet over channel microelectrodes. Two configurations of electrochemical cell with different geometries were investigated both theoretically and experimentally. Velocity and size of droplets, as well as internal recirculating convection within droplets, were evaluated from chronoamperometric curves by specific transition times depending on the cell configuration. In addition, the droplet content was probed from the Faradaic current controlled by mass transport and by internal hydrodynamic regime. For droplet velocity and size, experimental data were systematically compared to optical measurements. All the results demonstrated the high performance of the electrochemical detection reached under these conditions. They successfully validate the concept of self‐consistent electrochemical detections of aqueous droplets within microchannels for the simultaneous determination of their velocity, size and content.  相似文献   

8.
We investigated how chemical equilibria are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF) and phase Doppler anemometry (PDA). The motivation for this study was the increasing number of publications in which electrospray ionization mass spectrometry is used for binding constant determination. The PDA was used to monitor droplet size and velocity, whereas LIF was used to monitor fluorescent analytes within the electrospray droplets. Using acetonitrile as solvent, we found an average initial droplet diameter of 10 microm in the electrospray. The PDA allowed us to follow the evolution of these droplets down to a size of 1 microm. Rhodamine B-sulfonylchloride was used as a fluorescent analyte within the electrospray. By spatially resolved LIF it was possible to probe the dimerization equilibrium of this dye. Measurements at different spray positions showed no influence of the decreasing droplet size on the monomer-dimer equilibrium. However, with the fluorescent dye pair DCM and oxazine 1 it was shown that a concentration increase does occur within electrosprayed droplets, using fluorescence resonance energy transfer as a probe for the average pair distance.  相似文献   

9.
The velocity of a molecule evaporated from a mass‐selected protonated water nanodroplet is measured by velocity map imaging in combination with a recently developed mass spectrometry technique. The measured velocity distributions allow probing statistical energy redistribution in ultimately small water nanodroplets after ultrafast electronic excitation. As the droplet size increases, the velocity distribution rapidly approaches the behavior expected for macroscopic droplets. However, a distinct high‐velocity contribution provides evidence of molecular evaporation before complete energy redistribution, corresponding to non‐ergodic events.  相似文献   

10.
This study investigates the viscoelastic effects on droplet migration induced by a wettability gradient on a rigid substrate by a numerical simulation based on OpenFOAM with the volume‐of‐fluid method. The droplets are set with different rheological properties to investigate the effect of the elastic parameters. The Oldroyd‐B model was employed. Quantitative differences in the migration and deformation between Newtonian and viscoelastic droplets were investigated by changing the degree of elasticity. The droplet migration shows conspicuously higher mobility for high elasticity, especially during the accelerating period. Moreover, the displacement and velocity increased with the decrease of a viscoelasticity parameter, and the velocity enhancement was regulated by the elastic instability shown at a high Weissenberg number. In addition, the velocity of the droplet changes more significantly over the range of contact angles of 130° to 60° compared to other wettability‐gradient surfaces.  相似文献   

11.
Dispensing uniform pico‐to‐nanoliter droplets has become one of essential components in various application fields from high‐throughput bio‐analysis to printing. In this study, a new method is suggested and demonstrated for dispensing a droplet on the top plate with an inverted geometry by using electric field. The process of dispensing droplets consists of two stages: (i) formation of liquid bridge by moving up the charged fluid mass using the electrostatic force between the charges on the fluid mass and the induced charges on the substrate and (ii) its break‐up by the motion of the top plate. Different from conventional electrohydrodynamic methods, electric induction enables the droplets to be dispensed on various surfaces including non‐conducting substrate. The use of capillarity with an inverted geometry removes the need of external pumps or elaborates control for constant flow feed. The droplet diameter has been characterized as a function of the nozzle‐to‐plate distance and the plate moving velocity. The robustness of the present method is shown in terms of nozzle length and applied voltage. Finally, its practical applicability is confirmed by rendering a 19 by 24 array of highly uniform droplets with only 1.8% size variation without use of any active feedback control.  相似文献   

12.
Even though the inkjet technology has been recognized as one of the most promising technologies for electronic and bio industries, the full understanding of the dynamics of an inkjet droplet at its operating conditions is still lacking. In this study, the normal impact of water droplets on solid substrates was investigated experimentally. The size of water droplets studied here was 46 microm and was much smaller than the most of the previous studies on drop impact. The Weber number (We) and Reynolds number (Re) were 0.05-2 and 10-100, respectively, and the Ohnesorge number was fixed at 0.017. The wettability of the solid substrate was varied by adsorbing a self-assembled monolayer of octadecyltrichlorosilane followed by the exposure to UV-ozone plasma. The impact scenarios for low We impacts were found to be qualitatively different from the high to moderate We impacts. Neither the development of a thin film and lamella under the traveling sphere nor the entrapment of small bubbles was observed. The dynamics of droplet impact at the conditions studied here is found to proceed under the combined influences of inertia, surface tension, and viscosity without being dominated by one specific mechanism. The maximum spreading factor (beta), the ratio of the diameter of the wetted surface and the drop diameter before impact, was correlated well with the relationship ln beta=0.090 ln We/(fs-cos theta)+0.151 for three decades of We/(fs-cos theta), where theta is the equilibrium contact angle, and fs is the ratio between the surface areas contacting the air and the solid substrate. The result implies that the final shape of the droplet is determined by the surface phenomenon rather than fluid mechanical effects.  相似文献   

13.
This report is concerned with theoretical demonstration of the spontaneous emulsification which has been observed in a soft contact of nitrobenzene with water without surfactant [K. Aoki, M. Li, J. Chen, T. Nishiumi, Electrochem. Commun. 11 (2009) 239]. The demonstration is based on the model of spherical oil droplets with any size in equilibrium. The droplets are composed of the smallest droplets, the total number of which is given. An assembly of small droplets has larger surface energy than that of large ones because the surface energy is proportional to the surface area. The former has larger configurational entropy than the latter because the number of small droplets is bigger than that of the large ones. Since the free energy is determined by the competition between the surface energy and the entropy, it is not clear which assembly has lower free energy. This question was solved numerically here by statistical mechanics calculation of the size distributions, which contained only a parameter of the surface energy. The results of the computation at small number of droplets were used for deriving approximate equations for extremely large number of droplets. The size distribution was localized both to the smallest and the largest droplets. The diameter of the largest droplet was estimated from the dynamics in which coalescence by diffusion of droplets is disturbed by gravitational convection. The size then predicted was of the order of micrometer, being close to experimental values.  相似文献   

14.
Controlling the spatial distribution of liquid droplets on surfaces via surface energy patterning can be used to deliver material to specified regions via selective liquid/solid wetting. Although studies of the equilibrium shape of liquid droplets on heterogeneous substrates exist, much less is known about the corresponding wetting kinetics. Here we present large-scale atomistic simulations of liquid nanodroplets spreading on chemically patterned surfaces. Results are presented for lines of polymer liquid (droplets) on substrates consisting of alternating strips of wetting (equilibrium contact angle theta0 = 0 degrees) and nonwetting (theta0 approximately 90 degrees) material. Droplet spreading is compared for different wavelength lambda of the pattern and strength of surface interaction on the wetting strips. For small lambda, droplets partially spread on both the wetting and nonwetting regions of the substrate to attain a finite contact angle less than 90 degrees. In this case, the extent of spreading depends on the interaction strength in the wetting regions. A transition is observed such that, for large lambda, the droplet spreads only on the wetting region of the substrate by pulling material from nonwetting regions. In most cases, a precursor film spreads on the wetting portion of the substrate at a rate strongly dependent on the width of the wetting region.  相似文献   

15.
This work concerns the reexamination and extension of the current theory of phase transition dynamics for liquid droplets growing on soluble aerosols from a supersaturated gas mixture for the general case of arbitrary value of vapor concentration. We found that the inconsistency in the common treatment of the vapor diffusion, due to an implicit assumption of the constancy of gas density in the vicinity of a droplet by neglecting its dependency on temperature and vapor concentration, leads to the obvious discrepancy in the Maxwell expression for the growth rate regarding droplets of near critical size. Restoring the correct treatment of the vapor diffusion in terms of the mass concentration of water vapor and taking into the consideration variations of gas density in the vicinity of a droplet in compliance with the equation of state of moist air, we have obtained a new expression for the droplet growth rate valid for an arbitrary value of vapor concentration. The limitations imposed by the molecular kinetic fluxes to postnucleation diffusional growth of small droplets with a large Knudsen number are also reevaluated to include previously neglected physical effects. In particular, the essential contribution of the vapor molecular energy flux into the total kinetic molecular heat flux as well as the temperature variations of mean thermal velocities of air and vapor molecules in the vicinity of the droplet interface have been taken into consideration. Surprisingly significant differences have been found in new expressions derived for the droplet growth rate and droplet temperature, even in the limit of small vapor concentration, if comparing with commonly used results. These findings could help with better interpretation of experimental measurements to infer more reliable data for the mass and thermal accommodations coefficients.  相似文献   

16.
The ability of a liquid droplet to move on an incline has important ramifications in discrete volume fluidic devices. By taking advantage of the spontaneous and copious formation of visible air bubbles within water droplets on a polytetrafluoroethylene (PTFE) surface, we uncovered a direct correlation between their presence and the ability of droplets to slide down an incline. We forward two possible mechanisms to account for this behavior. The first is attributed to the air bubbles creating regions where additional solid-liquid-vapor phase interfaces are present; wherein due to the buoyancy force acting upwards, the orientation of the contact angles of each bubble (which should also be in hysteresis but in the opposite direction of the hysteresis at the droplet rim contact lines) dictate that the net force of the bubbles in the droplet act down an incline. We show here that this mechanism cannot fully account for the bubble enhanced sliding behavior. The second mechanism is based on the occurrence of the droplet front advancing first, causing the droplet to elongate and thus allowing the receding contact line to partially sweep inwards over the bubbles. This causes a series of point-wise disruptions on the contact line that permits the droplet to slide down more readily. The relatively short time of ~180s during which these micron sized bubbles decrease in size indicates a possibility of this mechanism contributing to a transient means to reduce the retention force of droplets that reside on hydrophobic surfaces.  相似文献   

17.
Elliptic droplets of nematic liquid crystal dispersed in a fluid organic monomer were obtained by phase separation from an isotropic mixture consisting of an organic monomer and a nematic liquid crystal contained in a poly(ethylene terephthalate) cell with inner surfaces treated with rubbed polyimide. The elliptic shape is a consequence of the constraint upon droplet growth along the direction perpendicular to the cell surfaces owing to the small thickness. Then, the resulting droplets will have a contact area with the inner surfaces of the cell treated with polyimide, which will impart a planar orientation on the liquid crystal in the droplet. By means of an optical microscope, using a simple pin hole of 5 μm, we have selected single droplets for a series of samples having different contact areas. By polarized infrared spectroscopy we have also studied the liquid crystal orientation in selected areas of the droplets. We then report the dependence of the order parameter of the liquid crystal on different contact areas with the alignment surface of the cell. The good degree of planar alignment of the liquid crystal in the elliptic droplets allows the use of such a technique for realizing electro-optical films operating in the reverse mode. We report the electro-optical transmission of reverse mode films with different sizes of elliptic droplet.  相似文献   

18.
Helium droplets spanning a wide size range, N(He) = 10(3)-10(10), were formed in a continuous-nozzle beam expansion at different nozzle temperatures and a constant stagnation pressure of 20 bars. The average sizes of the droplets have been obtained by attenuation of the droplet beam through collisions with argon and helium gases at room temperature. The results obtained are in good agreement with previous measurements in the size range N(He) = 10(5)-10(7). Moreover, the measurements give the average sizes in the previously uncharacterized range of very large droplets of 10(7)-10(10) atoms. The droplet sizes and beam flux increase rapidly at nozzle temperatures below 6 K, which is ascribed to the formation of droplets within the nozzle interior. The mass spectra of the droplet beam upon electron impact ionization have also been obtained. The spectra show a large increase in the intensity of the He(4) (+) signal upon increase of the droplet size, an effect which can be used as a secondary size standard in the droplet size range N(He) = 10(4)-10(9) atoms.  相似文献   

19.
The equilibrium properties of polymer droplets on a soft deformable surface are investigated by molecular dynamics simulations of a bead-spring model. The surface consists of a polymer brush with irreversibly end-tethered linear homopolymer chains onto a flat solid substrate. We tune the softness of the surface by varying the grafting density. Droplets are comprised of bead-spring polymers of various chain lengths. First, both systems, brush and polymer liquid, are studied independently in order to determine their static and dynamic properties. In particular, using a numerical implementation of an AFM experiment, we measure the shear modulus of the brush surface and compare the results to theoretical predictions. Then, we study the wetting behavior of polymer droplets with different surface/drop compatibility and on substrates that differ in softness. Density profiles reveal, under certain conditions, the formation of a wetting ridge beneath the three-phase contact line. Cap-shaped droplets and cylindrical droplets are also compared to estimate the effect of the line tension with respect to the droplet size. Finally, the results of the simulations are compared to a phenomenological free-energy calculation that accounts for the surface tensions and the compliance of the soft substrate. Depending on the surface/drop compatibility, surface softness, and drop size, a transition between two regimes is observed: from one where the drop surface energy balances the adhesion with the surface, which is the classical Young-Dupre? wetting regime, to another one where a coupling occurs between adhesion, droplet and surface elastic energies.  相似文献   

20.
We study the effects of Marangoni stresses on the flow in an evaporating sessile droplet, by extending a lubrication analysis and a finite element solution of the flow field in a drying droplet, developed earlier. The temperature distribution within the droplet is obtained from a solution of Laplace's equation, where quasi-steadiness and neglect of convection terms in the heat equation can be justified for small, slowly evaporating droplets. The evaporation flux and temperature profiles along the droplet surface are approximated by simple analytical forms and used as boundary conditions to obtain an axisymmetric analytical flow field from the lubrication theory for relatively flat droplets. A finite element algorithm is also developed to solve simultaneously the vapor concentration, and the thermal and flow fields in the droplet, which shows that the lubrication solution with the Marangoni stress is accurate for contact angles as high as 40 degrees. From our analysis, we find that surfactant contamination, at a surface concentration as small as 300 molecules/microm(2), can almost entirely suppress the Marangoni flow in the evaporating droplet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号