首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu [J. Chem. Phys. 117, 10156 (2002)] for the hard-core contribution and a corrected mean-field theory for the attractive contribution. A comparison of the theoretical results with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field theory. Both the present corrected theory and the simulations suggest that depletion and desorption occur at low temperature, and the local segregation can be observed in most cases. For binary mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface excesses than the original one does, while in the case of the attractive pore, no improvement is found in the prediction of a surface excess of the smaller molecule.  相似文献   

2.
A density functional theory is proposed for an inhomogeneous hard-core Yukawa (HCY) fluid based on Rosenfeld's perturbative method. The excess Helmholtz energy functional is derived from a modified fundamental measure theory for the hard-core repulsion and a quadratic functional Taylor expansion for the long-ranged attractive or repulsive interactions. To test the established theory, grand canonical ensemble Monte Carlo simulations are carried out to simulate the density profiles of attractive and repulsive HCY fluid near a wall. Comparison with the results from the Monte Carlo simulations shows that the present density functional theory gives accurate density profiles for both attractive and repulsive HCY fluid near a wall. Both the present theory and simulations suggest that there is depletion for attractive HCY fluid at low temperature, but no depletion is found for repulsive HCY fluid. The calculated results indicate that the present density functional theory is better than those of the modified version of the Lovett-Mou-Buff-Wertheim and other density functional theories. The present theory is simple in form and computationally efficient. It predicts accurate radial distribution functions of both attractive and repulsive HCY fluid except for the repulsive case at high density, where the theory overestimates the radial distribution function in the vicinity of contact.  相似文献   

3.
Standard Monte Carlo simulations are carried out to assess the accuracy of theoretical predictions for the structural properties of a model fluid interacting through a hard-core two-Yukawa potential composed of a short-range attractive well next to a hard repulsive core, followed by a smooth, long-range repulsive tail. Theoretical calculations are performed in the framework provided by the Ornstein-Zernike equation, solved either analytically with the mean spherical approximation (MSA) or iteratively with the hypernetted-chain (HNC) closure. Our analysis shows that both theories are generally accurate in a thermodynamic region corresponding to a dense vapor phase around the critical point. For a suitable choice of potential parameters, namely, when the attractive well is deep and/or large enough, the static structure factor displays a secondary low-Q peak. In this case HNC predictions closely follow the simulation results, whereas MSA results progressively worsen the more pronounced this low-Q peak is. We discuss the appearance of such a peak, also experimentally observed in colloidal suspensions and protein solutions, in terms of the formation of equilibrium clusters in the homogeneous fluid.  相似文献   

4.
基于密度泛函理论研究二元排斥Yukawa流体的表面结构性质   总被引:3,自引:0,他引:3  
杨振  徐志军  杨晓宁 《物理化学学报》2006,22(12):1460-1465
基于自由能密度泛函理论(DFT)考察了二元排斥Yukawa (HCRY)流体在不同外场下的密度分布. 基于微扰理论, 体系的Helmholtz自由能泛函采用硬球排斥部分和长程色散部分贡献之和, 其中Kierlik和Rosinberg的加权密度近似(WDA)被用来计算硬球排斥部分, 而色散部分采用平均场理论(MFT)进行描述. 为了验证DFT计算结果的合理性, 研究中采用巨正则Monte Carlo(GCMC)模拟计算了在不同主体相密度、硬核直径和位能参数比的条件下二元HCRY混合流体的密度分布. 结果表明, 该DFT计算结果与GCMC模拟值吻合良好.  相似文献   

5.
Theoretically-based van der Waals one-fluid (vdW1) mixing rules are derived for Lennard–Jones (LJ) chain mixtures. The rules provide equivalent one-fluid segment parameters for LJ size (σ) and energy () parameter as well as chain length (m) based on the parameters of the individual mixture components and the component mole fractions. The mixing rules are tested by performing Monte Carlo simulations of eight different binary mixtures and the equivalent vdW1 pure fluid, each at three densities. The simulations test the effects of changing LJ size parameter, LJ energy parameter and chain length individually and together. The effects of mole fraction and density are also examined. The mixing rules are tested for accuracy in predicting compressibility factors and radial distribution functions. It is found that the vdW1 rules provide excellent agreement when size and energy parameter are varied. Good agreement is found for mixtures with different chain lengths. The discrepancy is worst at very high densities when all component parameters are varied simultaneously.  相似文献   

6.
The first-order mean spherical approximation (FMSA) theory proposed by Tang et al. [Fluid Phase Equilib., 134, 21(1997)] is applied for studying several typical Yukawa fluids, including attractive, repulsive, and multi-Yukawa cases. The FMSA study is particularly advantageous in providing thermodynamics and structure information in a simple, analytical, and consistent manner. Comparisons with the latest reported computer simulation data for compressibility factor, internal energy, and radial distribution function show that FMSA performs very well and the performance is very close to the full MSA and to several other theories, developed individually for the above-mentioned cases or properties. The present study provides solid evidence to support FMSA applications to more complex fluids.  相似文献   

7.
A completely analytic perturbation theory has been developed to calculate the Helmholtz energy, compressibility factor, internal energy and constant-volume heat capacity for square-well chain fluid mixtures. This theory is based on the improved Barker–Henderson macroscopic compressibility (mc) approximation proposed by Zhang, the first-order perturbation theory of Wertheim in which Zhang’s analytic monomer radial distribution function as the function of temperature and monomer density is used, and a simple mixing rule similar to that of Hino–Prausnitz. The validity of the perturbation theory is evaluated by comparing the calculated compressibility factor, internal energy and constant-volume heat capacity for the freely jointed square-well chain mixtures from the theory to MC simulation data. The results show that the theory predicts results in good agreement with simulation results.  相似文献   

8.
Computer simulations have been performed for fluids with van der Waals potential, that is, hard spheres with attractive inverse power tails, to determine the equation of state and the excess energy. On the other hand, the first- and second-order perturbative contributions to the energy and the zero- and first-order perturbative contributions to the compressibility factor have been determined too from Monte Carlo simulations performed on the reference hard-sphere system. The aim was to test the reliability of this "exact" perturbation theory. It has been found that the results obtained from the Monte Carlo perturbation theory for these two thermodynamic properties agree well with the direct Monte Carlo simulations. Moreover, it has been found that results from the Barker-Henderson [J. Chem. Phys. 47, 2856 (1967)] perturbation theory are in good agreement with those from the exact perturbation theory.  相似文献   

9.
An analytic representation of thermodynamic properties of the freely jointed square-well chain fluid is developed based on the thermodynamic perturbation theory of Barker–Henderson, Zhang and Weitheim. By using a real function expression for the radial distribution function and incorporating structural information for square-well monomer of TPT1 model, an analytic expression for the Helmholtz energy of square-well chain fluid is expanded from Zhang’s analytic expressions for thermodynamic properties of square-well monomer. The expression leads to good predictions of the compressibility factor, residual internal energy and constant-volume heat capacity for 4-mer, 8-mer and 16-mer square-well fluids when compared with the Monte Carlo (MC) simulation results. The incorporating structural information for square-well dimer of TPT-D model is also calculated. To obtain the constant-volume heat capacity needed, NVT MC simulations were performed.  相似文献   

10.
The second-order integral-equation formalism of [Attard J. Chem. Phys. 91, 3072 (1989); 95, 4471 (1991)], applied previously to one-component hard spheres and Lennard-Jones fluids, as well as to their mixtures, is used to binary Widom-Rowlinson mixtures. Comparison with Monte Carlo simulations of the pair correlation functions and of the demixing phase diagram shows that this method is also quite accurate in the case of highly nonadditive mixtures. Moreover, the results of the second-order theory are compared with previous theoretical predictions. Our interest is also in the calculation of the bridge functions, i.e., parts of the radial distribution functions either not included or simply approximated in the usual theories.  相似文献   

11.
12.
To evaluate the performance of a recently proposed third-order thermodynamic perturbation theory (TPT), we employ the third TPT for calculation of thermodynamic properties such as compressibility factor, internal energy, excess chemical potential, gas-liquid coexistence curve, and critical properties of several fluids. By comparing the third-order TPT results with corresponding simulation data available in literature and supplied in the present report and theoretical results from several other theoretical approaches, one concludes that the third-order TPT is, in general, more accurate than other approaches such as Barker-Henderson second-order TPT using a macroscopic compressibility approximation (MCA-TPT), self-consistent Ornstein-Zernike approach, Monte Carlo perturbation theory, and a specially devised equation of state. Specifically, the third-order TPT can predict quantitatively a double critical phenomena of gas-liquid transition and a low-density liquid (LDL)-high-density liquid (HDL) transition associated with a soft core (SC) potential fluid very satisfactorily, but the predictions for the LDL-HDL transition based on the second-order MCA-TPT are quantitatively very bad or qualitatively incorrect. The failure of the second-order MCA-TPT for the SC fluid can be ascribed to the facts that for the SC potential the second-order and third-order terms of the perturbation expansion are not small quantities and that the second-order term is underestimated by the MCA. It is concluded that the present third-order version of the TPT is reliable for varying model fluids.  相似文献   

13.
Monte Carlo simulations in the NVT ensemble of the reference hard-sphere fluid have been performed to obtain the “exact” first- and second-order terms in the inverse temperature expansion of the free energy of fluids with hard-core potentials. The results have been used to obtain parametrizations of the free energy of fluids with Sutherland potentials with variable range as well as for a fluid with a hard-core Lennard–Jones potential. The results for the excess energy and the equation of state are compared with simulation data available in the literature for these fluids.  相似文献   

14.
A thermodynamic model for the freely jointed square-well chain fluids was developed based on the thermodynamic perturbation theory of Barker-Henderson, Zhang and Wertheim. In this derivation Zhang's expressions for square-well monomers improved from Barker-Henderson compressibility approximation were adopted as the reference fluid, and Wertheim's polymerization method was used to obtain the free energy term due to the bond connectivity. An analytic expression for the Helmholtz free energy of the square-well chain fluids was obtained. The expression without adjustable parameters leads to the thermodynamic consistent predictions of the compressibility factors, residual internal energy and constant-volume heat capacity for dimer, 4-mer, 8-mer and 16-mer square-well fluids. The results are in good agreement with the Monte Carlo simulation. To obtain the MC data of residual internal energy and the constant-volume heat capacity needed, NVT MC simulations were performed for these square-well chain fluids.  相似文献   

15.
The thermodynamic and structural properties of purely repulsive hard-core Yukawa particles in the fluid state are determined through Monte Carlo simulation and modeled using perturbation theory and integral equation theory in the mean spherical approximation (MSA). Systems of particles with Yukawa screening lengths of 1.8, 3.0, and 5.0 are examined with results compared to variations of MSA and perturbation theory. Thermodynamic properties were predicted well by both theories in the fluid region up to the fluid-solid phase boundary. Further, we found that a simplified exponential version of the MSA is the most accurate at predicting radial distribution function at contact. Radial distribution function of repulsive hard-core Yukawa particles are also reported. The results show that methods based on MSA and perturbation theory that are typically applied to the attractive hard-core Yukawa potential can also be extended to the purely repulsive hard-core Yukawa potential.  相似文献   

16.
Because of the increasing interest in studying the phenomenon exhibited by charge-stabilized colloidal suspensions in confining geometry, we present a density functional theory (DFT) for a hard-core multi-Yukawa fluid. The excess Helmholtz free-energy functional is constructed by using the modified fundamental measure theory and Rosenfeld's perturbative method, in which the bulk direct correlation function is obtained from the first-order mean spherical approximation. To validate the established theory, grand canonical ensemble Monte Carlo (GCMC) simulations are carried out to determine the density profiles and surface excesses of multi-Yukawa fluid in a slitlike pore. Comparisons of the theoretical results with the GCMC data suggest that the present DFT gives very accurate density profiles and surface excesses of multi-Yukawa fluid in the slitlike pore as well as the radial distribution functions of the bulk fluid. Both the DFT and the GCMC simulations predict the depletion of the multi-Yukawa fluid near a nonattractive wall, while the mean-field theory fails to describe this depletion in some cases. Because the simple form of the direct correlation function is used, the present DFT is computationally as efficient as the mean-field theory, but reproduces the simulation data much better than the mean-field theory.  相似文献   

17.
Canonical Monte Carlo (NVT-MC) simulations were performed to obtain surface tension and coexistence densities at the liquid-vapor interface of one-site associating Lennard-Jones and hard-core Yukawa fluids, as functions of association strength and temperature. The method to obtain the components of the pressure tensor from NVT-MC simulations was validated by comparing the equation of state of the associative hard sphere system with that coming from isothermal-isobaric Monte Carlo simulations. Surface tension of the associative Lennard-Jones fluid determined from NVT-MC is compared with previously reported results obtained by molecular dynamics simulations of a pseudomixture model of monomers and dimers. A good agreement was found between both methods. Values of surface tension of associative hard-core Yukawa fluids are presented here for the first time.  相似文献   

18.
We perform Monte Carlo simulations on the hard-core attractive Yukawa system to test the optimized Baxter model that was introduced by Prinsen and Odijk [J. Chem. Phys. 121, 6525 (2004)] to study a fluid phase of spherical particles interacting through a short-range pair potential. We compare the chemical potentials and pressures from the simulations with analytical predictions from the optimized Baxter model. We show that the model is accurate to within 10% over a range of volume fractions from 0.1 to 0.4, interaction strengths up to three times the thermal energy, and interaction ranges from 6% to 20% of the particle diameter, and performs even better in most cases. We furthermore establish the consistency of the model by showing that the thermodynamic properties of the Yukawa fluid computed via simulations may be understood on the basis of one similarity variable, the stickiness parameter defined within the optimized Baxter model. Finally, we show that the optimized Baxter model works significantly better than an often used, naive method determining the stickiness parameter by equating the respective second virial coefficients based on the attractive Yukawa and Baxter potentials.  相似文献   

19.
The extension of a new coordination number model to mixture is presented in this work. Extended model agrees well with the Monte Carlo (MC) simulation results for square-well (SW) mixture fluids and shows better results compared with other models. To test our model, we compare the compressibility factors from various models for SW fluids at different λ values and for SW fluid mixtures at λ=1.5. Although our model is obtained by fitting simulation data at λ=1.5, it shows better results for the different λ values than other coordination number model. Compared with the compressibility factors of various binary mixtures of SW fluids calculated from other models, this model presents better results. Because our model considers the temperature dependency importantly by using the total site number, it predicts coordination number and compressibility factor well in the wide temperature range and enables one to derive an equation of state (EOS) through integration of the coordination number equation.  相似文献   

20.
The effect of varying wall-particle and particle-particle interactions on the density profiles near a single wall and the solvation forces between two walls immersed in a fluid of particles is investigated by grand canonical Monte Carlo simulations. Attractive and repulsive particle-particle and particle-wall interactions are modeled by a versatile hard-core Yukawa form. These simulation results are compared to theoretical calculations using the hypernetted chain integral equation technique, as well as with fundamental measure density functional theory (DFT), where particle-particle interactions are either treated as a first order perturbation using the radial distribution function or else with a DFT based on the direct-correlation function. All three theoretical approaches reproduce the main trends fairly well, but exhibit inconsistent accuracy, particularly for attractive particle-particle interactions. We show that the wall-particle and particle-particle attractions can couple together to induce a nonlinear enhancement of the adsorption and a related "repulsion through attraction" effect for the effective wall-wall forces. We also investigate the phenomenon of bridging, where an attractive wall-particle interaction induces strongly attractive solvation forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号