共查询到20条相似文献,搜索用时 15 毫秒
1.
Brouard M Campbell EK Cireasa R Johnsen AJ Yuen WH 《The Journal of chemical physics》2012,136(4):044310
The photodissociation of CS(2) has been investigated using velocity-map ion imaging of the S((1)D(2)) atomic photofragments following excitation at 193 nm and at longer wavelengths close to the S((1)D(2)) channel threshold. The experiments probe regions both above and below the energetic barrier to linearity on the (1)Σ(u) (+)((1)B(2)) potential energy surface. The imaging data in both regions indicate that the electronic angular momentum of the S((1)D(2)) atom products is unpolarized, but also reveal different dissociation dynamics in the two regions. Excitation above the barrier to linearity yields an inverted CS((1)Σ(+)) vibrational population distribution, whereas the long-wavelength state-to-state results following excitation below the barrier reveal CS((1)Σ(+))(v, J) coproduct state distributions which are consistent with a statistical partitioning of the energy. Below the barrier, photofragment excitation spectra point to an enhancement of the singlet channel for K = 1, relative to K = 0, where K is the projection of the angular momentum along the principal axis, in agreement with previous work. However, the CS cofragment product state distributions are found to be insensitive to K. It is proposed that dissociation below the barrier to linearity occurs primarily on a surface with a significant potential energy well and without an exit channel barrier, such as that for the ground electronic state. However, oscillatory structure is also observed in the kinetic energy release distributions, which is shown to be consistent with a mapping of parent molecule bending motion. This could indicate the operation of competing direct and indirect dissociation mechanisms below the barrier to linearity. 相似文献
2.
Li J Yang J Mo Y Lau KC Qian XM Song Y Liu J Ng CY 《The Journal of chemical physics》2007,126(18):184304
The pulsed field ionization-photoelectron (PFI-PE) spectrum of bromochloromethane (CH2BrCl) in the region of 85,320-88,200 cm-1 has been measured using vacuum ultraviolet laser. The vibrational structure resolved in the PFI-PE spectrum was assigned based on ab initio quantum chemical calculations and Franck-Condon factor predictions. At energies 0-1400 cm-1 above the adiabatic ionization energy (IE) of CH2BrCl, the Br-C-Cl bending vibration progression (nu1+=0-8) of CH2BrCl+ is well resolved and constitutes the major structure in the PFI-PE spectrum, whereas the spectrum at energies 1400-2600 cm-1 above the IE(CH2BrCl) is found to exhibit complex vibrational features, suggesting perturbation by the low lying excited CH2BrCl+(A 2A") state. The assignment of the PFI-PE vibrational bands gives the IE(CH2BrCl)=85,612.4+/-2.0 cm-1 (10.6146+/-0.0003 eV) and the bending frequencies nu1+(a1')=209.7+/-2.0 cm-1 for CH2BrCl+(X2A'). We have also examined the dissociative photoionization process, CH2BrCl+hnu-->CH2Cl++Br+e-, in the energy range of 11.36-11.57 eV using the synchrotron based PFI-PE-photoion coincidence method, yielding the 0 K threshold or appearance energy AE(CH2Cl+)=11.509+/-0.002 eV. Combining the 0 K AE(CH2Cl+) and IE(CH2BrCl) values obtained in this study, together with the known IE(CH2Cl), we have determined the 0 K bond dissociation energies (D0) for CH2Cl+-Br (0.894+/-0.002 eV) and CH2Cl-Br (2.76+/-0.01 eV). We have also performed CCSD(T, full)/complete basis set (CBS) calculations with high-level corrections for the predictions of the IE(CH2BrCl), AE(CH2Cl+), IE(CH2Cl), D0(CH2Cl+-Br), and D0(CH2Cl-Br). The comparison between the theoretical predictions and experimental determinations indicates that the CCSD(T, full)/CBS calculations with high-level corrections are highly reliable with estimated error limits of <17 meV. 相似文献
3.
We have observed fully rotationally resolved transitions of the photoelectron vibrational bands 2(4), 2(5), 1(1)2(1), and 1(1)2(3) for ammonia cation (NH3+) by two-color infrared (IR)-vacuum ultraviolet (VUV)- pulsed field-ionization photoelectron (PFI-PE) measurements. By preparing an intermediate rovibrational state of neutral NH(3) with a known parity by IR excitation followed by VUV-PFI-PE measurements, we show that the photoelectron parity can be determined unambiguously. The IR-VUV-PFI-PE measurement of the 2(4) band clearly reveals the formation of both even and odd l states for the photoelectrons, where l is the orbital angular momentum quantum number. This observation is consistent with the conclusion that the lack of inversion symmetry for NH3 and NH3+ allows odd/even l mixings, rendering the production of both odd and even l states for the photoelectrons. Evidence is also found, indicating that the photoionization transitions with DeltaK=0 are strongly favored compared to that with DeltaK=3. For the 2(5), 1(1)2(1), and 1(1)2(3) bands, only DeltaK=0 transitions for the production of even l photoelectron states from the J'K'=2(0) rotational level of NH3(nu1=1) are observed. The preferential formation of even l photoelectron states for these vibrational bands is attributed to the fact that the DeltaK=0 transitions for the formation of odd l photoelectron states from the 2(0) rotational level of NH3(nu1=1) are suppressed by the constraint of nuclear-spin statistics. In addition to information obtained on the photoionization dynamics of NH3, this experiment also provides a more precise value of 3232+/-10 cm-1 for the nu1+ (N-H stretch) vibrational frequency of NH3+. 相似文献
4.
The dynamics of S(3P2,1,0; 1D2; 1S0) production from the 193 nm photodissociation of CH3SH has been examined by 2+1 resonance-enhanced-multiphoton-ionization (REMPI) techniques. Using the rate equation scheme, we have rationalized the intensities of S(3P2,1,0; 1D2; 1S0) observed according to the sequential two-photon dissociative pathways, (A): CH3SH + hv (193 nm) → CH3S + hv (193 nm) → S and (B): CH3SH + hv (193 nm) → HS + hv (193 nm) → S, as the major mechanisms for S production. We have satisfactorily fitted the photodissociation laser power dependencies for S(3P) and S(1D) produced from CH3SH by invoking photodissociation cross sections and branching ratios S(3P)/S(1D) for CH3S and HS similar to those determined previously in the 193 nm photodissociation of CH3SCH3 and H2S. This observation supports that the 193 nm photodissociation of CH3S and HS prepared from CH3SH yield predominantly S(lD) and S(3P), similar to the cases for CH3S prepared from CH3SCH3 and for HS prepared from H2S, respectively. A small amount of S(1S0) observed from the 193 nm photodissociation of CH3SH is attributed to pathway (B). 相似文献
5.
6.
A branching ratio of 1.6 +/- 0.3 for S(3P)/S(1D) is obtained for the dissociation of CS2 with very low fluence 193 nm laser (less than 2 mJ/cm2), in which the S(3P) and S(1D) have been state-selectively ionized using VUV lasers at different wavelengths. The anisotropy parameters betamax(3P) = 0.8 and betamax(1D) = 1.9 indicate that these channels are preferentially populated at different geometries and the lifetime is very short. 相似文献
7.
《Chemical physics letters》1986,124(1):90-92
Resonance-enhanced photoionization has been used to follow S(3P2) in the photodissociation of CS2 at 193 nm. The contributions from initial photodissociation and from S(1D) relaxation have been resolved and give a (15±5)% yield of S(1D). The possibility of secondary production of S(3Pj) by CS photodissociation with a second 193 nm photon is discussed. Although this might raise the S(1D) yield to (26±8)%, production of S(3PJ) is still the dominant photodissociation channel. 相似文献
8.
The intensity ratio of the neutral oxygen "red" emission lines O(1D2-3P(2,1)) 630.0 nm to 636.4 nm has been measured in terrestrial nightglow spectra obtained from astronomical instrumentation. The observed intensity ratio, I(630.0 nm)/I(636.4 nm) = 2.997 +/- 0.016, is consistent with the value of 2.997 determined from the recent spontaneous emission coefficient calculations of Storey and Zeippen (2000), distinctly lower than the value of 3.10 calculated from those coefficients recommended by the National Institutes of Standards and Technology (NIST), and lower than the value of 3.1 measured by laboratory experiment (Kernahan and Pang, 1975). A weak emission line measured at 639.174 +/- 0.003 nm has also been observed in these spectra and identified as the highly optically forbidden transition O(1D2-3P0) 639.1773 nm of the same multiplet as the red lines. The observed intensity ratio, I(636.4 nm)/I(639.2 nm) = 1700 +/- 700, is a factor of 2 lower than that predicted by most recent theoretical calculations. 相似文献
9.
Brouard M Cireasa R Clark AP Groenenboom GC Hancock G Horrocks SJ Quadrini F Ritchie GA Vallance C 《The Journal of chemical physics》2006,125(13):133308
Polarized laser photolysis, coupled with resonantly enhanced multiphoton ionization detection of O(1D2) and velocity-map ion imaging, has been used to investigate the photodissociation dynamics of ozone at 193 nm. The use of multiple pump and probe laser polarization geometries and probe transitions has enabled a comprehensive characterization of the angular momentum polarization of the O(1D2) photofragments, in addition to providing high-resolution information about their speed and angular distributions. Images obtained at the probe laser wavelength of around 205 nm indicate dissociation primarily via the Hartley band, involving absorption to, and diabatic dissociation on, the B 1B2(3 1A1) potential energy surface. Rather different O(1D2) speed and electronic angular momentum spatial distributions are observed at 193 nm, suggesting that the dominant excitation at these photon energies is to a state of different symmetry from that giving rise to the Hartley band and also indicating the participation of at least one other state in the dissociation process. Evidence for a contribution from absorption into the tail of the Hartley band at 193 nm is also presented. A particularly surprising result is the observation of nonzero, albeit small values for all three rank K = 1 orientation moments of the angular momentum distribution. The polarization results obtained at 193 and 205 nm, together with those observed previously at longer wavelengths, are interpreted using an analysis of the long range quadrupole-quadrupole interaction between the O(1D2) and O2(1Deltag) species. 相似文献
10.
The dissociation of energy-selected ND(3) (+) to form ND(2) (+)+D near its threshold has been investigated using the pulsed field ionization-photoelectron (PFI-PE)-photoion coincidence method. The breakdown curves for ND(3) (+) and ND(2) (+) give a value of 15.891+/-0.001 eV for the 0 K dissociation threshold or appearance energy (AE) for ND(2) (+) from ND(3). We have also measured the PFI-PE vibrational bands for ND(3) (+)(X;v(2) (+)=0, 1, 2, and 3), revealing partially resolved rotational structures. The simulation of these bands yields precise ionization energies (IEs) for ND(3) (+) X(0,v(2) (+)=0-3,0,0)<--ND(3) X(0,0,0,0). Using the 0 K AE (ND(2) (+)) and IE(ND(3))=10.200+/-0.001 eV determined in the present study, together with the known 0 K bond dissociation energy for ND(3) [D(0)(D-ND(2))=4.7126+/-0.0025 eV], we have determined the D(0)(ND(2) (+)-D), IE(ND(2)), and 0 K heat of formation for ND(2) (+) to be 5.691+/-0.001 eV, 11.1784+/-0.0025 eV, and 1261.82+/-0.4 kJ/mol, respectively. The PFI-PE spectrum is found to exhibit a steplike feature near the AE(ND(2) (+)), indicating that the dissociation of excited ND(3) (+) at energies slightly above the dissociation threshold is prompt, occurring in the time scale =10(-7) s, as observed for the NH(3) system. The available energetic data for the NH(2)-NH(2) (+) and NH(3)-NH(3) (+) system are found to be in excellent accord with those for the ND(2)-ND(2) (+) and ND(3)-ND(3) (+) system after taking into account the zero-point vibrational energy corrections. This finding indicates that the thermochemical data for these two systems are reliable with well-founded error limits. 相似文献
11.
Infrared vacuum-ultraviolet laser pulsed field ionization-photoelectron study of CH3Br+ (X(2)E(3/2)) 总被引:1,自引:0,他引:1
By preparing methyl bromide (CH3Br) in selected rotational levels of the CH3Br(X(1)A1; v1 = 1) state with infrared (IR) laser excitation prior to vacuum-ultraviolet (VUV) laser pulsed field ionization-photoelectron (PFI-PE) measurements, we have observed rotationally resolved photoionization transitions to the CH3Br(+)(X(2)E(3/2); v1(+) = 1) state, where v1 and v1(+) are the symmetric C-H stretching vibrational mode for the neutral and cation, respectively. The VUV-PFI-PE origin band for CH3Br(+)(X(2)E(3/2)) has also been measured. The simulation of these IR-VUV-PFI-PE and VUV-PFI-PE spectra have allowed the determination of the v1(+) vibrational frequency (2901.8 +/- 0.5 cm(-1)) and the ionization energies of the origin band (85 028.3 +/- 0.5 cm(-1)) and the v1(+) = 1 <-- v1 = 1 band (84 957.9 +/- 0.5 cm(-1)). 相似文献
12.
T. Kraft T. Bregel J. Ganz K. Harth M. -W. Ruf H. Hotop 《Zeitschrift für Physik D Atoms, Molecules and Clusters》1988,10(4):473-481
Using crossed beams and mass spectrometric ion detection, we have investigated the ionization of argon atoms and dimers in a skimmed supersonic beam by HeI (58.4 nm) and NeI (73.6, 74.4 nm) photons and by He(23,1 S) and state selected Ne(3s 3 P 2,3 P 0) metastable atoms. The cross section ratioq 22/q 1 (i.e. the cross sectionq 22 for formation of Ar 2 + ions from Ar2 divided by the total ionization cross sectionq 1 for Ar atoms), arbitrarily normalized to 1 for HeI impact, is found to vary weakly as follows: HeI/NeI/He(23, 1 S)/Ne(3 P 0)Ne(3 P 2)=1/1.136(9)/0.893(4)/1.034(12)/0.985(9). The results are qualitatively interpreted using available information on the intermolecular potentials and the two different ionization processes. The observation thatq 22/q 1 is 5% larger for Ne(3 P 0) than for Ne(3 P 2) is attributed to anomalies in the respective branching ratios for formation of the Ar+(2 P 3/2)/Ar+(2 P 1/2) ion states in conjunction with differences in the stability of the formed Ar-Ar+(2 P 3/2) and Ar-Ar+(2 P 1/2) molecular ions. 相似文献
13.
Lee SK Silva R Thamanna S Vasyutinskii OS Suits AG 《The Journal of chemical physics》2006,125(14):144318
The absolute velocity-dependent alignment and orientation for S(1D2) atoms from the photodissociation of OCS at 193 nm were measured using the dc slice imaging method. Three main peaks ascribed to specific groups of high rotational levels of CO in the vibrational ground state were found, with rotationally resolved rings in a fourth slow region ascribed to weak signals associated with excited vibrational states of CO. The observed speed-dependent beta and polarization parameters support the interpretation that there are two main dissociation processes: a simultaneous two-surface (A' and A") excitation and the initial single-surface (A') excitation followed by the nonadiabatic crossing to ground state. At 193 nm photodissociation, the nonadiabatic dissociation process is strongly enhanced relative to longer wavelengths. The angle- and speed-dependent S(1D2) density matrix can be constructed including the higher order (K = 3,4) contributions for the circularly polarized dissociation light. This was explicitly done for selected energies and angles. It was found in one case that the density matrix is sensitively affected by the rank 4 terms, suggesting that the higher order contributions should not be overlooked for an accurate picture of the dissociation dynamics in this system. 相似文献
14.
Smolin AG Vasyutinskii OS Vieuxmaire OP Ashfold MN Balint-Kurti GG Orr-Ewing AJ 《The Journal of chemical physics》2006,124(9):94305
Resonance-enhanced multiphoton ionization and velocity map imaging of the Cl(2P(3/2)0) fragments of BrCl photolysis at 467.16 nm have been used to obtain a complete set of orientation parameters (with ranks K = 1 and 3) describing the polarization of the electronic angular momentum. The experiments employ two geometries distinguished only by the circular or linear polarization of the photolysis laser beam. Normalized difference images constructed from the data accumulated using a right or left circularly polarized probe-laser beam, counterpropagating with the photolysis laser, were fitted to basis images corresponding to contributions from various odd-rank anisotropy parameters. Expressions are given for the difference images in terms of the K = 1 and 3 anisotropy parameters, which describe coherent and incoherent parallel and perpendicular excitation and dissociation mechanisms. The nonzero values of the anisotropy parameters are indicative of nonadiabatic dissociation dynamics, with likely contributions from flux on the A 3Pi1,B 3Pi(0+),C 1Pi1, and X 1sigma+(0+) states as well as one further omega = 1 state, all of which correlate adiabatically to Cl(2P(3/2)0) + Br(2P(3/2)0) photofragments. The magnitudes of the parameters depend both on the amplitudes of dissociative flux in these states, and also on the phases accumulated by the nuclear wave functions for different dissociation pathways. 相似文献
15.
Photodissociation of CH(3)I(+) in the ground vibronic state generated by mass-analyzed threshold ionization resulted in a superb spectrum for the first excited electronic state (A (2)A(1)) with hardly any spurious peak. Rotational structure in the spectrum could be resolved by using a single mode laser. This structure for one vibronic band, 2(1)3(1)6(1), was analyzed with the assumption of Hund's case (a) scheme both in the ground and excited electronic states. 相似文献
16.
The photodissociation dynamics of OCS at 248 nm: the S((3)P(J)) atomic angular momentum polarization
The dissociation of OCS has been investigated subsequent to excitation at 248 nm using velocity map ion imaging. Speed distributions, speed dependent translational anisotropy parameters, and the atomic angular momentum orientation and alignment are reported for the channel leading to S((3)P(J)). The speed distributions and beta parameters are in broad agreement with previous work and show behavior that is highly sensitive to the S-atom spin-orbit state. The data are shown to be consistent with the operation of at least two triplet production mechanisms. Interpretation of the angular momentum polarization data in terms of an adiabatic picture has been used to help identify a likely dissociation pathway for the majority of the S((3)P(J)) products, which strongly favors production of J=2 fragment atoms, correlated, it is proposed, with rotationally hot and vibrationally cold CO cofragments. For these fragments, optical excitation to the 2 (1)A(') surface is thought to constitute the first step, as for the singlet dissociation channel. This is followed by crossing, via a conical intersection, to the ground 1 (1)A(') state, from where intersystem crossing occurs, populating the 1 (3)A(')1 (3)A(")((3)Pi) states. The proposed mechanism provides a qualitative rationale for the observed spin-orbit populations, as well as the S((3)P(J)) quantum yield and angular momentum polarization. At least one other production mechanism, leading to a more statistical S-atom spin-orbit state distribution and rotationally cold, vibrationally hot CO cofragments, is thought to involve direct excitation to either the (3)Sigma(-) or (3)Pi states. 相似文献
17.
Martinez-Haya B Bass MJ Brouard M Vallance C Torres I Barr J 《The Journal of chemical physics》2004,120(23):11042-11052
Dissociation and ionization processes in dimethyl disulfide, CH(3)S(2)CH(3), induced by one- or two-photon absorption of 193 nm light, have been studied using velocity-map ion imaging. The analysis of the ion images of the CH(3)S(2) (+), CH(3)S(+), S(2) (+), and S(+) fragments has allowed the characterization of the scattering dynamics of some of the main photolysis and dissociative-ionization processes. In particular, the experiments corroborate the formation of electronically excited SCH(3)((2)A(1)) products in the 193 nm photodissociation of dimethyl disulfide seen in earlier studies, and show that laser ionization provides a very sensitive method for their detection. The data have also allowed determination of the recoil energy and angular distributions of the CH(3)S(2) (+) and CH(3)S(+) products of the two-photon dissociative-ionization of the CH(3)S(2)CH(3) molecule. The measured distributions for these products are consistent with the formation of a transient parent ion which dissociates after a substantial intramolecular rearrangement, possibly yielding the most stable isomeric forms of the fragments, namely CH(2)S(2)H(+) and CH(2)SH(+). 相似文献
18.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2. 相似文献
19.
Photoionization and autoionization of electronically excited atomic oxygen O((1)D) are investigated in the energy range between 12 and 26 eV using tunable laser-produced plasma radiation in combination with time-of-flight mass spectrometry. A broad, asymmetric, and intense feature is observed that is peaking at 20.53+/-0.05 eV. It is assigned to the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition, which subsequently autoionizes by a Coster-Kronig transition, as predicted by the previous theoretical work [K. L. Bell et al., J. Phys. B 22, 3197 (1989)]. Specifically, the energy of the unperturbed transition occurs at 20.35+/-0.07 eV. Its shape is described by a Fano profile revealing a q parameter of 4.25+/-0.8 and a width of gamma=2.2+/-0.15 eV. Absolute photoionization cross section sigma is derived, yielding sigma=22.5+/-2.3 Mb at the maximum of the resonance. In addition, weak contributions to the O((1)D) yield from dissociative ionization originating from molecular singlet oxygen [O(2)((1)Delta(g))] are identified as well. Possible applications of the 2s(2)2p(4)((1)D)-->2s(1)2p(5)((1)P) transition as a state-selective and sensitive probe of excited oxygen in combination with photoionization mass spectrometry are briefly discussed. 相似文献
20.
We investigated the dissociative ionization of formaldehyde (CH(2)O) and ethene (C(2)H(4)) produced from photolysis of 1,3-trimethylene oxide at 193 nm using a molecular-beam apparatus and vacuum-ultraviolet radiation from an undulator for direct ionization. The CH(2)O (C(2)H(4)) product suffers from severe dissociative ionization to HCO(+) (C(2)H(3) (+) and C(2)H(2) (+)) even though photoionization energy is as small as 9.8 eV. Branching ratios of fragmentation of CH(2)O and C(2)H(4) following ionization are revealed as a function of kinetic energy of products using ionizing photons from 9.8 to 14.8 eV. Except several exceptions, branching ratios of daughter ions increase with increasing photon energy but decrease with increasing kinetic energy. The title reaction produces CH(2)O and C(2)H(4) mostly on electronic ground states but a few likely on triplet states; C(2)H(4) (a(3)B(1u)) seems to have a yield greater than CH(2)O (a(3)A(2)). The distinct features observed at small kinetic energies of daughter ions are attributed to dissociative ionization of photoproducts CH(2)O (a(3)A(2)) and C(2)H(4) (a(3)B(1u)). The observation of triplet products indicates that intersystem crossing occurs prior to fragmentation of 1,3-trimethylene oxide. 相似文献