共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoelectric properties of nanocomposite thin films prepared with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) and graphene 总被引:1,自引:0,他引:1
Carbon nanotubes (CNTs), either single wall carbon nanotubes (SWNTs) or multiwall carbon nanotubes (MWNTs), can improve the thermoelectric properties of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT?:?PSS), but it requires addition of 30-40 wt% CNTs. We report that the figure of merit (ZT) value of PEDOT?:?PSS thin film for thermoelectric property is increased about 10 times by incorporating 2 wt% of graphene. PEDOT?:?PSS thin films containing 1, 2, 3 wt% graphene are prepared by solution spin coating method. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy analyses identified the strong π-π interactions which facilitated the dispersion between graphene and PEDOT?:?PSS. The uniformly distributed graphene increased the interfacial area by 2-10 times as compared with CNT based on the same weight. The power factor and ZT value of PEDOT?:?PSS thin film containing 2 wt% graphene was 11.09 μW mK(-2) and 2.1 × 10(-2), respectively. This enhancement arises from the facilitated carrier transfer between PEDOT?:?PSS and graphene as well as the high electron mobility of graphene (200,000 cm(2) V(-1) s(-1)). Furthermore the porous structure of the thin film decreases the thermal conductivity resulting in a high ZT value, which is higher by 20% than that for a PEDOT?:?PSS thin film containing 35 wt% SWNTs. 相似文献
2.
The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO(2) radicals, as well as the oxygen O(2) and hydrogen peroxide H(2)O(2) molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I(cryst)) ice films. The evolution of their concentrations with the temperature indicates that HO(2), O(2), and H(2)O(2) result from a simple step reaction fuelled by OH, where O(2) is a product of HO(2) and HO(2) a product of H(2)O(2). The local order of ice is also modified, whatever the initial structure is. The crystalline ice I(cryst) becomes amorphous. The high-density amorphous phase (I(a)h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I(a)l). The phase I(a)h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase-we call I(a)vh-is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K. 相似文献
3.
The speciation and quantification of sulfur species based on sulfur K-edge x-ray absorption spectroscopy is of wide interest, particularly for biological and petroleum science. These tasks require a firm understanding of the sulfur 1s near-edge x-ray absorption fine structure (NEXAFS) spectra of relevant species. To this end, we have examined the gas phase sulfur 1s NEXAFS spectra of a group of simple thiol and thioether compounds. These high-resolution gas phase spectra are free of solid-state broadening, charging, and saturation effects common in the NEXAFS spectra of solids. These experimental data have been further analyzed with the aid of improved virtual orbital Hartree-Fock ab initio calculations. The experimental sulfur 1s NEXAFS spectra show fine features predicted by calculation, and the combination of experiment and calculation has been used to improve assignment of spectroscopic features relevant for the speciation and quantification of the sulfur compounds. 相似文献
4.
Chunyan Sun 《Analytica chimica acta》2009,632(2):163-378
Electrochemical behavior and electrogenerated chemiluminescence (ECL) of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) immobilized in poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol) (PEDOT/PSS-PVA) composite films via ion-exchange have been investigated with tripropylamine (TPA) as the co-reactant at a glassy carbon electrode. The immobilized Ru(bpy)32+ performed a surface-controlled electrode reaction. The Ru(bpy)32+ modified electrode showed a fast ECL response to TPA, and was used for the ECL detection of TPA with high sensitivity. The ECL intensity was linearly related to concentrations of TPA over the range from 0.50 μmol L−1 to 0.80 mmol L−1, and the detection limit was 0.10 μmol L−1 (S/N = 3). The as-prepared electrode exhibited good precision and long-term stability for TPA determination. 相似文献
5.
6.
We report an investigation into the calculation of near-edge X-ray absorption fine structure with the CIS(D) method. Core excitation energies computed with time-dependent density functional theory using standard exchange-correlation functionals are systematically underestimated. CIS(D) predicts core excitation energies that are closer to experiment. However, excitation energies for Rydberg states are too low with respect to valence states, and for some systems spectra that are qualitatively incorrect are obtained. A scaled opposite spin only approach is proposed that reduces the error in the computed core excitation energies, and results in spectra that are in good agreement with experiment. 相似文献
7.
Nakai I Kondoh H Amemiya K Nagasaka M Shimada T Yokota R Nambu A Ohta T 《The Journal of chemical physics》2005,122(13):134709
The mechanism of CO oxidation reaction on oxygen-precovered Pt(111) surfaces has been studied by using time-resolved near-edge x-ray absorption fine structure spectroscopy. The whole reaction process is composed of two distinct paths: (1) a reaction of isolated oxygen atoms with adsorbed CO, and (2) a reaction of island-periphery oxygen atoms after the CO saturation. CO coadsorption plays a role to induce the dynamic change in spatial distribution of O atoms, which switches over the two reaction paths. These mechanisms were confirmed by kinetic Monte Carlo simulations. The effect of coadsorbed water in the reaction mechanism was also examined. 相似文献
8.
Bu HB Götz G Reinold E Vogt A Schmid S Blanco R Segura JL Bäuerle P 《Chemical communications (Cambridge, England)》2008,(11):1320-1322
Efficient post-functionalization of conductive polymer films was achieved by Cu(+)-catalyzed "click"-cycloaddition of novel poly(azidomethyl-EDOT) and various functionalized terminal alkynes under mild heterogeneous conditions with high conversion efficiencies. 相似文献
9.
《Electrochemistry communications》2003,5(7):603-608
In situ ESR spectroelectrochemical studies of poly(3,4-ethylenedioxythiophene) (PEDOT) have been performed, in an attempt to take a closer look at species responsible for the conductivity of the polymer in the doped state. A series of ESR spectra at progressively changed potentials applied to the polymer film in the oxidation and subsequently, reduction half-cycles were recorded. The results reveal distinct ESR lines with a noteworthy concentration of spins in the reduced state of the polymer and marked changes in both the intensities and ΔBpp widths of the ESR signal across the studied potential range, indicating non-trivial changes in the character of charge carriers with changing potential. Also, interesting phenomena like the potential hysteresis of the spin concentration and of ΔBpp linewidths between the oxidation and reduction cycles of the polymer are observed. The presence of residual spins in the polymer in the reduced state may indicate that at least to some partial extent, PEDOT chains exist in the quinoid rather than benzoid configuration in the dedoped state. Hysteresis of spectroscopic parameters may imply that certain hindrance factors like slow anion expulsion speed accompany the dedoping process of the polymer. 相似文献
10.
Near-edge X-ray absorption fine structure (NEXAFS) spectra have been measured for ethylene chemisorbed on Pt(111) at 90 and 300 K. From the polarization dependence of the spectra at 90 K, ethylene is found to lie down with a π bond to the surface. The spectra collected at 300 K indicate a CC bond normal to the surface in ethylidyne, and a SCF Xα calculation was carried out to assign the K-edge transitions in this species. The ethylidyne carboncarbon bond (which is nominally a single bond) appears to be shorter (≈0.03 A) than that for chemisorbed ethylene. 相似文献
11.
High-sensitivity x-ray absorption fine structure investigation of arsenic shallow implant in silicon
H. Yamazaki M. Yoshiki M. Takemura M. Tomita S. Takeno 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009,64(8):808
High-sensitivity fluorescence-yield x-ray absorption fine structure spectroscopy (XAFS) has been investigated to characterize the local structure around arsenic shallow implant in silicon. Fluorescence-yield XAFS experiments were performed using a high-brilliance synchrotron radiation beam from an in-vacuum-type undulator in a third-generation light source. In addition to investigating the efficiency of high-brilliance undulator x-rays during the fluorescence-yield XAFS measurements, we compared the analytical performance of both the wavelength dispersive spectrometer (WDS) and the energy dispersive spectrometer (EDS) based on the silicon drift detector (SDD). It was confirmed that the WDS reduces the influence of scattering background due to the high spectral resolution. Another advantage of the WDS is high counting rate measurements. It was found that fluorescence-yield XAFS using undulator x-rays combined with the WDS permits superior sensitivity measurements. 相似文献
12.
We study the capacitive properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin layer that shows memory effects. The capacitance vs. charge plot indicates the history-dependence of the electrochemical responses, for instance capacitance with memory or memcapacitance. The variation of the charge vs. potential exhibits a hysteresis loop that is related to the non-equilibrium properties of the redox switching. The calculation of the energy that can be added to and removed from the memcapacitance system during cycling shows a reactive behavior. This property is due to the electromechanical behaviors of PEDOT film that can store and transform electrochemical energy. Indeed, the charging–discharging processes during the redox switching induce a volume and conformational change of the polymer that in turn influences its electrochemical responses. In the context of bio-inspired information processing systems or bio-inspired circuits, a 3-terminal device exhibiting non-linearity and history-dependence responses is of interest for developing organic memory-circuit elements such as an electrochemical memcapacitance. 相似文献
13.
The perfluorohexylated 3,4-ethylenedioxythiophene 5 was prepared via Mitsunobu reaction of perfluorohexylatyed diol 2 with diethyl 3,4-dihydroxythiophenedicarboxylate followed by decarboxylation. The polymerization of 5 was conducted with both oxidative chemical and electrochemical polymerizations. The polymers were characterized by cyclic voltammogram, UV, IR, TGA and DSC. 相似文献
14.
Doherty WJ Wysocki RJ Armstrong NR Saavedra SS 《The journal of physical chemistry. B》2006,110(10):4900-4907
We report the first application of a potential-modulated spectroelectrochemical ATR (PM-ATR) instrument utilizing multiple internal reflections at an optically transparent electrode to study the charge-transfer kinetics and electrochromic response of adsorbed films. A sinusoidally modulated potential waveform was applied to an indium-tin oxide (ITO) electrode while simultaneously monitoring the optical reflectivity of thin (2-6 equivalent monolayers) copolymer films of poly(3,4-ethylenedioxythiophene) (PEDOT) and poly(3,4-ethylenedioxythiophene methanol) (PEDTM), previously characterized in our laboratory. At high modulation frequencies the measured response of the polymer film is selective toward the fastest electrochromic processes in the film, presumably those occurring within the first adsorbed monolayer. Quantitative determination of the electrochromic switching rate, derived from the frequency response of the attenuated reflectivity, shows a linear decrease in the rate, from 11 x 10(3) s(-1) to 3 x 10(3) s(-1), with increasing proportions of PEDTM in the copolymer, suggesting that interactions between the methanol substituent on EDTM and the ITO surface slow the switching process by limiting the rate of conformational change in the polymer film. 相似文献
15.
Poly(3,4-ethylenedioxythiophene) (PEDOT), a conducting polymer, was electrochemically synthesized with p-toluenesulfonate (TSNa) as a dopant on gold surface. The electrochemical properties of the polymer were studied by impedance spectroscopy and cyclic voltammetry (CV). It was found that the impedance magnitude of the electrode significantly decreased over a wide range of frequency from 100 to 104 Hz after the polymer deposition. The CV demonstrated enhanced reversibility of the PEDOT film. The surface morphology was investigated by scanning electronic microscope (SEM) and atomic force microscope (AFM). Due to the effect of TSNa structure, nano-fungus was observed. Polymerization time was optimized and 30 min deposition resulted in the highest charge capacity, showing the highest electroactive surface area, possibly due to its porous structured polymer. Moreover, the high specific surface area could be favorable for cell attachment. The stability of PEDOT in glutathione (GSH), a common biologically relevant reducing agent, was studied with polypyrrole (PPy) as a baseline. It showed that the former had much better stability than the latter and it could be an excellent candidate for potential applications of in vivo neural devices. 相似文献
16.
Pierre Verge 《European Polymer Journal》2008,44(11):3864-3870
The thermal stability study of a conducting semi-IPN has been reported. The thermo-oxidation of poly(ethylene oxide) (PEO)/poly(3,4-ethylenedioxythiophene) (PEDOT) semi-Interpenetrating Polymer Network (semi-IPN) was studied at 80 °C in open air. The degradation was followed by spectrophotometry in the visible and near infrared range, cyclic voltamperometry and thermogravimetric analysis. Fluorescence spectrophotometry allowed for the identification of OH by-product originated in the PEO network degradation by the use of a chemiluminescent probe, typically terephthalic acid. The formation of hydroxyl radicals damaged the PEDOT chains as checked by infrared spectroscopy. The mechanism of degradation is further confirmed (i) by introducing a radical scavenger or (ii) by performing a thermal ageing under inert atmosphere; in both cases the semi-IPN life-time is tremendously increased. 相似文献
17.
Madalina M. Barsan Valentina Pifferi Luigi Falciola Christopher M.A. Brett 《Analytica chimica acta》2016
A combination of the electroactive polymer poly(brilliant green) (PBG) or conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) with carbon nanotubes to obtain CNT/PBG and CNT/PEDOT modified carbon film electrodes (CFE) has been investigated as a new biosensor platform, incorporating the enzymes glucose oxidase (GOx) as test enzyme, alcohol oxidase (AlcOx) or alcohol dehydrogenase (AlcDH). The sensing parameters were optimized for all biosensors based on CNT/PBG/CFE, CNT/PEDOT/CFE platforms. Under optimized conditions, both GOx biosensors exhibited very similar sensitivities, while in the case of AlcOx and AlcDH biosensors, AlcOx/CNT/PBG/CFE was found to give a higher sensitivity and lower detection limit. The influence of dissolved O2 on oxidase-biosensor performance was investigated and was shown to be different for each enzyme. Comparisons were made with similar reported biosensors, showing the advantages of the new biosensors, and excellent selectivity against potential interferents was successfully demonstrated. Finally, alcohol biosensors were successfully used for the determination of ethanol in alcoholic beverages. 相似文献
18.
Dawidczyk TJ Walton MD Jang WS Grunlan JC 《Langmuir : the ACS journal of surfaces and colloids》2008,24(15):8314-8318
The layer-by-layer assembly technique was used to create electrically conductive films with poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) and branched polyethylenimine (BPEI). Titanium dioxide (TiO(2)) and carbon black were used to prevent UV-degradation of these PEDOT-PSS thin film assemblies. Film growth and conductivity were studied, while varying composition and examining the effect of UV absorbing particles on the electrical conductivity. All films showed similar initial sheet resistances, but after exposure to 365 nm UV light for 9 days (correlating to approximately 4 years of sunlight), the films containing TiO(2) were up to 250 times more conductive. Additionally, the TiO(2) containing films were 27% more optically transparent than films made with PEDOT in the absence of TiO(2). The addition of colloidal titania allows the useful life of the PEDOT films to be extended without the detrimental effects of decreased transparency. Doping the PEDOT with dimethylsulfoxide produced eight bilayer films that were almost 6 times more conductive. However, the degradation rate for the doped PEDOT films without TiO(2) was 10 times greater than the doped films with TiO(2). 相似文献
19.
This work describes the use of a PEDOT:PSS-based conductive polymer for designing AChE-based biosensors. The transducers were obtained directly by screen-printing a PEDOT:PSS suspension on the surface of thick film carbon electrodes. The obtained working electrodes showed a high conductivity when compared with electrodes modified with conventional mediators like cobalt phthalocyanine or tetracyanoquinodimethane. The PEDOT:PSS polymer was shown to be suitable for thiocholine oxidation, allowing the measurement of AChE activity at 100 mV vs Ag/AgCl. The high conductivity of PEDOT:PSS allowed the accurate detection of the organophosphate insecticide chlorpyrifos-oxon at concentrations as low as 4 × 10−9 M, corresponding to an inhibition ratio of 5%. 相似文献
20.
Francesc Estrany David Aradilla Ramn Oliver Elaine Armelin Carlos Alemn 《European Polymer Journal》2008,44(5):1323-1330
Multilayered films formed by 3, 5 and 7 alternated layers of poly(3,4-ethylenedioxythiophene) and poly(N-methylpyrrole) have been prepared by chronoamperometry under a constant potential of 1.4 V using a layer-by-layer electrodeposition technique. In order to examine influence of the interface:bulk dimensional ratio, the thickness of the yielded films was reduced from the submicrometric to the nanometric scale by decreasing the polymerization time of each layer from 100 s to 10 s. The electroactivity, electrochemical characteristics and morphologies of the resulting multilayered films have been compared with those obtained for both single-component poly(3,4-ethylenedioxythiophene) films prepared using identical experimental conditions and previously reported multilayered films with thickness within the micrometric scale [Estrany F, Aradilla D, Oliver R, Alemán C. Eur Polym J 2007;43:1876]. 相似文献