首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report on the isotopic effect on the cage-induced excited-state quenching inside small Ar(m) clusters (m<10(2)) solvated in large Ne(N) clusters (N approximately 7.5x10(3)). Excited OH(A)/OD(A) fragments are produced by photodissociation of H2O and D2O molecules and the quenching agents are correspondingly H or D atoms. The decrease of the fluorescence yield with the size of the cluster m>m0 is observed in both cases and it is attributed to the formation of the cage of argon atoms around the doped molecule. Interestingly, more atoms are needed to induce the fluorescence quenching of OD*(A) fragments, m0=21+/-3, compared to the electronically excited state quenching of OH*(A) molecules, 11+/-2. A diffusion model containing two free parameters, the quenching cross section sigmaq and the number of argon atoms forming the cage m0, explains the effect in terms of the residence time of the hydrogen atom inside the cage. We suggest that the melting of the doped rare gas clusters is responsible for the different predissociation dynamics. The quenching cross section obtained from the experimental data is in good agreement with former experiments.  相似文献   

2.
The recombination of ozone via the chaperon mechanism, i.e., ArO+O2 --> Ar+O3 and ArO2+O --> Ar+O3, is studied by means of classical trajectories and a pairwise additive Ar-O3 potential energy surface. The recombination rate coefficient has a strong temperature dependence, which approximately can be described by T(-n) with n approximately 3. It is negligible for temperatures above 700 K or so, but it becomes important for low temperatures. The calculations unambiguously affirm the conclusions of Hippler et al. [J. Chem. Phys. 93, 6560 (1990)] and Luther et al. [Phys. Chem. Chem. Phys. 7, 2764 (2005)] that the chaperon mechanism makes a sizable contribution to the recombination of O3 at room temperature and below. The dependence of the chaperon recombination rate coefficient on the isotopomer, studied for two different isotope combinations, is only in rough qualitative agreement with the experimental data. The oxygen atom isotope exchange reaction involving ArO and ArO2 van der Waals complexes is also investigated; the weak binding of O or O2 to Ar has only a small effect.  相似文献   

3.
Clusters formed by a coexpansion process of argon and neon have been studied using synchrotron radiation. Electrons from interatomic Coulombic decay as well as ultraviolet and x-ray photoelectron spectroscopy were used to determine the heterogeneous nature of the clusters and the cluster structure. Binary clusters of argon and neon produced by coexpansion are shown to exhibit a core-shell structure placing argon in the core and neon in the outer shells. Furthermore, the authors show that 2 ML of neon on the argon core is sufficient for neon valence band formation resembling the neon solid. For 1 ML of neon the authors observe a bandwidth narrowing to about half of the bulk value.  相似文献   

4.
Heterogeneous clusters created by doping Ar host clusters with Kr or Xe are shown to have radically different structures from the mixed clusters of the same type created by co-expansion of Ar-Kr or Ar-Xe gas mixtures. In contrast to the co-expansion case, the doped mixed clusters can be produced with Kr or Xe on the surface and Ar in the bulk. With the doping technique it is thus possible to control the surface composition of a specific cluster. A study of the cluster properties as a function of the doping pressure is also reported for the case of Ar clusters doped with Xe. The clusters have been studied by means of synchrotron radiation based X-ray photoelectron spectroscopy.  相似文献   

5.
Pickup of several molecules, H(2)O, HBr, and CH(3)OH, and Ar atoms on free Ar(N) clusters has been investigated in a molecular beam experiment. The pickup cross sections of the clusters with known mean sizes, ?≈ 150 and 260 were measured by two independent methods: (i) the cluster beam velocity decrease due to the momentum transfer of the picked up molecules to the clusters, and (ii) Poisson distribution of a selected cluster fragment ion as a function of the pickup pressure. In addition, the pickup cross sections were calculated using molecular dynamics and Monte Carlo simulations. The simulations support the results of the velocity measurements. On the other hand, the Poisson distributions yield significantly smaller cross sections, inconsistent with the known Ar(N) cluster sizes. These results are discussed in terms of: (i) an incomplete coagulation of guest molecules on the argon clusters when two or more molecules are picked up; and (ii) the fragmentation pattern of the embedded molecules and their clusters upon ionization on the Ar cluster. We conclude that the Poisson distribution method has to be cautiously examined, if conclusions should be drawn about the cluster cross section, or the mean cluster size ?, and the number of picked up molecules.  相似文献   

6.
7.
Clusters of tetracene molecules with different numbers of attached (Ar)(N), (Ne)(N) and (H(2))(N) particles (N = 1-2000) are assembled inside superfluid He nanodroplets and studied via laser-induced fluorescence. The frequency shift of the fluorescence spectrum of the tetracene molecules is studied as a function of cluster size and pickup order of tetracene and cluster species. For (Ar)(N) and (Ne)(N) clusters, our results indicate that the tetracene molecules reside inside the clusters when tetracene is captured by the He nanodroplet before the cluster species; conversely, the tetracene molecules stay on the surface of the clusters when tetracene is captured after the cluster species. In the case of (H(2))(N) clusters, however, tetracene molecules reside inside the (H(2))(N) clusters irrespective of the pickup order. We conclude that (Ar)(N) and (Ne)(N) clusters are rigid at T = 0.38 K, while (H(2))(N) clusters of up to N = 2000 remain fluxional at the same temperature. The results may also indicate the occurrence of heterogeneous nucleation of the (H(2))(N) clusters, which is induced by the interaction with tetracene chromophore molecules.  相似文献   

8.
The formation of Ar and H2 clusters, having up to 900 particles in helium droplets, has been studied via laser induced fluorescence of attached Mg-phthalocyanine (Mg-Pc) molecules. In the experiments, one Mg-Pc molecule in average was added to each He droplet either before or after the cluster species, and the shift of the spectrum of the Mg-Pc molecules was studied as a function of the cluster size. For Ar clusters, about a factor of 2 smaller matrix shift was observed for the late pickup of the Mg-Pc molecules as compared with the prior pickup, indicating that in the former case, the Mg-Pc molecules reside on the surface of the preformed Ar clusters. On the other hand, the spectra of the Mg-Pc molecules attached to H2 clusters are independent of the pickup order, which is consistent with Mg-Pc molecules residing near the center of the H2 clusters in both cases. Therefore H2 clusters remain fluxional in helium droplets at T=0.38 K. No significant differences in the spectra were observed between the para-H2 and ortho-H2 clusters.  相似文献   

9.
We have measured K–edge X–ray absorption spectra of argon in sputtered aluminum films at a synchrotron radiation facility (the Photon Factory). We found that the energy and shape of white line change when the film is annealed at 500 °C and the spectrum becomes resembling that of argon implanted in silicon. From the analyses of the X–ray absorption spectra and TEM observation we concluded that argon exists as very small atom clusters with a diameter less than 1 nm or exist as isolated atoms in the as–sputtered aluminum film, and that the size of the clusters become as big as 10 nm diameter when the film is heated.  相似文献   

10.
We report finite temperature quantum mechanical simulations of structural and dynamical properties of Ar(N)-CO(2) clusters using a path integral Monte Carlo algorithm. The simulations are based on a newly developed analytical Ar-CO(2) interaction potential obtained by fitting ab initio results to an anisotropic two-dimensional Morse∕Long-range function. The calculated distributions of argon atoms around the CO(2) molecule in Ar(N)-CO(2) clusters with different sizes are consistent to the previous studies of the configurations of the clusters. A first-order perturbation theory is used to quantitatively predict the CO(2) vibrational frequency shift in different clusters. The first-solvation shell is completed at N = 17. Interestingly, our simulations for larger Ar(N)-CO(2) clusters showed several different structures of the argon shell around the doped CO(2) molecule. The observed two distinct peaks (2338.8 and 2344.5 cm(-1)) in the υ(3) band of CO(2) may be due to the different arrangements of argon atoms around the dopant molecule.  相似文献   

11.
We have studied the two-channel thermal decomposition of methyl radicals in argon, involving the reactions CH3 + Ar --> CH + H2 + Ar (1a) and CH3 + Ar --> CH2 + H + Ar (1b), in shock tube experiments over the 2253-3527 K temperature range, at pressures between 0.7 and 4.2 atm. CH was monitored by continuous-wave, narrow-line-width laser absorption at 431.1311 nm. The collision-broadening coefficient for CH in argon, 2gamma(CH-Ar), was measured via repeated single-frequency experiments in the ethane pyrolysis system behind reflected shock waves. The measured 2gamma(CH-Ar) value and updated spectroscopic and molecular parameters were used to calculate the CH absorption coefficient at 431.1311 nm (23194.80 cm(-1)), which was then used to convert raw traces of fractional transmission to quantitative CH concentration time histories in the methyl decomposition experiments. The rate coefficient of reaction 1a was measured by monitoring CH radicals generated upon shock-heating highly dilute mixtures of ethane, C2H6, or methyl iodide, CH3I, in an argon bath. A detailed chemical kinetic mechanism was used to model the measured CH time histories. Within experimental uncertainty and scatter, no pressure dependence could be discerned in the rate coefficient of reaction 1a in the 0.7-4.2 atm pressure range. A least-squares, two-parameter fit of the current measurements, applicable between 2706 and 3527 K, gives k(1a) (cm(3) mol(-1) s(-1)) = 3.09 x 1015 exp[-40700/T (K)]. The rate coefficient of reaction 1b was determined by shock-heating dilute mixtures of C2H6 or CH3I and excess O2 in argon. During the course of reaction, OH radicals were monitored using the well-characterized R(1)(5) line of the OH A-X (0,0) band at 306.6871 nm (32606.52 cm(-1)). H atoms generated via reaction 1b rapidly react with O2, which is present in excess, forming OH. The OH traces are primarily sensitive to reaction 1b, reaction 9 (H + O2 --> OH + O) and reaction 10 (CH3 + O2 --> products), where the rate coefficients of reactions 9 and 10 are relatively well-established. No pressure dependence could be discerned for reaction 1b between 1.1 and 3.9 atm. A two-parameter, least-squares fit of the current data, valid over the 2253-2975 K temperature range, yields the rate expression k(1b) (cm(3) mol(-1) s(-1)) = 2.24 x 10(15) exp[-41600/T (K)]. Theoretical calculations carried out using a master equation/RRKM analysis fit the measurements reasonably well.  相似文献   

12.
The formation process of binary clusters has been studied using synchrotron based core level photoelectron spectroscopy. Free neutral krypton clusters have been produced by adiabatic expansion and doped with chloromethane molecules using the pickup technique. The comparison between the integrated intensities, linewidths, and level shifts of the cluster features of pure krypton and of chloromethane-krypton clusters has been used to obtain information about the cluster geometry. We have shown that most of the chloromethane molecules remain on the surface of the clusters.  相似文献   

13.
IR spectroscopy, laser induced fluorescence (LIF), and thermoluminescence (TL) measurements have been combined to monitor trapping, thermal mobility, and reactions of oxygen atoms in solid xenon. HXeO and O(3) have been used as IR active species that probe the reactions of oxygen atoms. N(2)O and H(2)O have been used as precursors for oxygen atoms by photolysis at 193 nm. Upon annealing of matrices after photolysis, ozone forms at two different temperatures: at 18-24 K from close O ...O(2) pairs and at approximately 27 K due to global mobility of oxygen atoms. HXeO forms at approximately 30 K reliably at higher temperature than ozone. Both LIF and TL show activation of oxygen atoms around 30 K. Irradiation at 240 nm after the photolysis at 193 nm depletes the oxygen atom emission at 750 nm and reduces the amount of HXeO generated in subsequent annealing. Part of the 750 nm emission can be regenerated by 266 nm and this process increases the yield of HXeO in annealing as well. Thus, we connect oxygen atoms emitting at 750 nm with annealing-induced formation of HXeO radicals. Ab initio calculations at the CCSD(T)/cc-pV5Z level show that XeO (1(1)Sigma(+)) is much more deeply bound [D(e) = 1.62 eV for XeO --> Xe+O((1)D)] than previous calculations have predicted. Taking into account the interactions with the medium in an approximate way, it is estimated that XeO (1(1)Sigma(+)) has a similar energy in solid xenon as compared with interstitially trapped O((3)P) suggesting that both possibly coexist in a low temperature solid. Taking into account the computational results and the behavior of HXeO and O(3) in annealing and irradiations, it is suggested that HXeO may be formed from singlet oxygen atoms which are trapped in a solid as XeO (1(1)Sigma(+)).  相似文献   

14.
The reaction of Ni atoms with molecular oxygen has been reinvestigated experimentally in neon matrices and theoretically at the DFT PW91PW91/6311G(3df) level. Experimental results show that i) the nature of the ground electronic state of the superoxide metastable product is the same in neon and argon matrices, ii) two different photochemical pathways exist for the conversion of the superoxide to the dioxide ground state (involving 1.6 or 4 eV photons) and iii) an important matrix effect exists in the Ni + O(2)--> Ni(O(2)) or ONiO branching ratios. Theoretical results confirm that the electronic ground state of the metastable superoxide corresponds to the singlet state, in agreement with former CCSD(T) calculations, but in contradiction with other recent works. Our results show that the ground electronic state of the dioxide is (1)Sigma(+)(g) with the lowest triplet and quintet states at slightly higher energy, consistent with the observation of weak vibronic transitions in the near infrared. The potential energy profiles are modelled for the ground state and nine electronic excited states and a pathway for the Ni(triplet) + O(2)(triplet) --> Ni(O(2)) or ONiO (singlet) reaction is proposed, as well as for the Ni(O(2)) --> ONiO photochemical reaction, accounting for the experimental observations.  相似文献   

15.
1 INTRODUCTION Sm(II) chemistry has been extensively studied due to the strong reduction potential of this 4f6 ion[1]. The transformation of unsaturated substrates by Sm (II) complexes into products with unusual structures is one of the most interesting research areas. For the successful examples reported, Sm(II) starting mate- rials were restricted primarily to cyclopentadienyl complexes[2]. The reactivity of Sm(II) complex with phenolate ligands has seldom been explored. Recen- tl…  相似文献   

16.
A low-temperature gas-phase kinetics study of the reactions and collisional relaxation processes involving C2(X1Sigma(g)+) and C2(a3Pi(u)) in collision with O2 and NO partners at temperatures from 300 to 24 K is reported. The experiments employed a CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) apparatus to attain low temperatures. The C2 species were created using pulsed laser photolysis at 193 nm of mixtures containing C2Cl4 diluted in N2, Ar, or He carrier gas. C2(X1Sigma(g)+) molecules were detected via pulsed laser-induced fluorescence in the (D1Sigma(u)+ <-- X1Sigma(g)+) system, and C2(a3Pi(u)) molecules were detected via pulsed laser-induced fluorescence in the (d 3Pi(g) <-- a 3Pi(u)) system. Relaxation of 3C2 by intersystem crossing induced by oxygen was measured at temperatures below 200 K, and it was found that this process remains very efficient in the temperature range 50-200 K. Reactivity of C2(X1Sigma(g)+) with oxygen became very inefficient below room temperature. Using these two observations, it was found to be possible to obtain the C2(X1Sigma(g)+) state alone at low temperatures by addition of a suitable concentration of O2 and then study its reactivity with NO without any interference coming from the possible relaxation of C2(a3Pi(u)) to C2(X1Sigma(g)+) induced by this reagent. The rate coefficient for reaction of C2(X1Sigma(g)+) with NO was found to be essentially constant over the temperature range 36-300 K with an average value of (1.6 +/- 0.1) x 10(-10) cm3 molecule(-1) s(-1). Reactivity of C2(a3Pi(u)) with NO was found to possess a slight negative temperature dependence over the temperature range 50-300 K, which is in very good agreement with data obtained at higher temperatures.  相似文献   

17.
1 INTRODUCTION In recent years, the syntheses, structures and reactivities of aryloxo lanthanide complexes have attracted a great deal of attention due to their various applications as homogeneous catalysts for organic reactions and precursors for organolan- thanide syntheses[1]. However, the reactivity of divalent lanthanide aryloxides has seldom been studied[2]. We have previously reported that (ArO)2- Sm(THF)4 (ArO = OC6H2-2,6-di-tert-butyl-4-Me) can efficiently initiate the poly…  相似文献   

18.
Spectral characteristics of (H2O)n, (O2)m(H2O)n, and (O)i(H2O)n cluster systems, where m≤2, i≤4, and 10 ≤ n ≤ 50, are studied with the molecular dynamics method using a flexible molecule model. The IR absorption spectra are changed substantially as a result of O2 molecule dissociation, and in the presence of atomic oxygen in the clusters, the spectra are characterized by a deep minimum at 520 cm?1. The absorption of oxygen causes a marked reduction in reflection coefficient R of monochromatic IR radiation. The number of peaks in the R(ω) spectra decreases to two in the case of molecular oxygen absorption and is no larger than four in the case of atomic oxygen absorption. The absorption of atomic oxygen by the clusters is also accompanied by a significant increase in the dissipation of energy accumulated by the clusters. This effect weakens when molecular oxygen is absorbed. An increase in atomic oxygen concentration in the clusters renders their radiation harder.  相似文献   

19.
To obtain the information on the photoactivated action of camptothecin (CPT) promoted by transition metals, CPT was UVA irradiated (λ = 365 nm) in dimethylsulfoxide (DMSO) solutions. Fe(III) ions present were efficiently reduced to Fe(II) under argon and also in the presence of oxygen. The photoinduced electron transfer under argon resulted into the generation of carbon-centered radicals identified by EPR spin trapping evidencing the cleavage of CPT skeleton. Whereas the absorption UV/vis experiments with equimolar ratio Fe(III):CPT excluded the formation of charge-transfer complexes, the fluorescence spectra of CPT in the presence of Fe(III) revealed a significant fluorescence quenching indicating the probability of physical association between Fe(III) and CPT species in DMSO solutions confirming Fe(III) involvement in the photoinduced transformation.  相似文献   

20.
The reaction of phosphorus trichloride with 2,6-diisopropyl phenol in the presence of LiCl under reflux conditions for 24 h produces a mixture of (ArO)PCl2 and (ArO)2PCl (Ar = 2,6-iPr2C6H3). The hydrolysis of the aryloxy compounds in acetone/H2O results in the formation of two novel phosphonate ester derivatives [(ArO)P(O)(OH)(CMe2OH)] (1) and [(ArO)2P(O)(CMe2OH)] (2), respectively in a moderate yield. The title compounds have presumably formed via acetone insertion to the P-H bonds of (ArO)P(O)(H)(OH) and (ArO)2P(O)(H), respectively, in the presence of HCl produced during the hydrolysis. Compounds 1 and 2 have been characterized by elemental analysis, and ESI-mass, Infrared and NMR spectroscopic techniques. Further, solid state structures of 1 and 2 have been established by single crystals X-ray diffraction studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号