首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of noncollinearity between unidirectional and uniaxial anisotropies on asymmetric magnetization reversal of ferromagnet/antiferromagnet (FM/AFM) bilayer has been investigated. The results show the emergence of noncollinear anisotropies comes from the competition among applied magnetic field, magnetic anisotropy and exchange coupling in FM/AFM interface. The noncollinearity can lead to the asymmetry of hysteresis loop of FM/AFM bilayer. However, when the magnetic field is applied along the uniaxial anisotropy axis of FM layer, the hysteresis loop of FM/AFM bilayer is always symmetry independence of the noncollinear angle. Our results indicate that the asymmetry not only originates from the noncollinearity but also depends on the applied magnetic field orientation. Moreover, the asymmetry of hysteresis loop is always along with the appearance of unequivalence for magnetization reversal of FM/AFM bilayer, and there is a periodicity of π with orientation of applied field for its periodicity independence of the angle of the noncollinearity between the uniaxial and unidirectional anisotropies. The results can help us to open additional avenues to tailor the future advance magnetic device.  相似文献   

2.
Asymmetric magnetization reversal is an unusual phenomenon in antiferromagnet/ferromagnet (AF/FM) exchange biased bilayers. We investigated this phenomenon in a simple model system experimentally and by simulation assuming inhomogeneously distributed interfacial AF moments. The results suggest that the observed asymmetry originates from the intrinsic broken symmetry of the system, which results in local incomplete domain walls parallel to the interface in reversal to negative saturation of the FM. The magneto-optical Kerr effect unambiguously confirms such an asymmetric reversal and a depth-dependent FM domain wall in accord with the magnetometry and simulations.  相似文献   

3.
This paper reports on the results of the investigation of the kinetics of magnetization reversal in FeNi-FeMn ferromagnet-antiferromagnet thin hybrid films grown by magnetron sputtering on silicon substrates in the presence of in-plane magnetic field, which provided unidirectional in-plane magnetic anisotropy in the ferromagnetic layer and a single-domain structure of the ferromagnet in the absence of an external magnetic field. The constructed hysteresis loops and magnetization loci have made it possible to reveal the specific features of the magnetization reversal process of an exchange-coupled ferromagnet, to establish new types of asymmetry, and to obtain new proofs for the existence of a spin spring at the ferromagnet-antiferromagnet interface. The visualization of the magnetization reversal process has allowed one to establish a one-to-one correspondence between the macrocharacteristics of the material and the real processes occurring in ferromagnet-antiferromagnet hybrid structures.  相似文献   

4.
Zero-field-cooled (ZFC) and field-cooled (FC) hysteresis loops of egg- and ellipsoid-shaped nanoparticles with inverted ferromagnetic (FM)-antiferromagnetic (AFM) core-shell morphologies are simulated using a modified Monte Carlo method, which takes into account both the thermal fluctuations and energy barriers during the rotation of spin. Pronounced exchange bias (EB) fields and reduced coercivities are obtained in the FC hysteresis loops. The analysis of the microscopic spin configurations allows us to conclude that the magnetization reversal occurs by means of the nucleation process during both the ZFC and FC hysteresis branches. The nucleation takes place in the form of “sparks” resulting from the energy competition and the morphology of the nanoparticle. The appearance of EB in the FC hysteresis loops is only dependent on that the movements of “sparks” driven by magnetic field at both branches of hysteresis loops are not along the same axis, which is independent of the strength of AFM anisotropy. The tilt of “spark” movement with respect to the symmetric axis implies the existence of additional unidirectional anisotropy at the AFM/FM interfaces as a consequence of the surplus magnetization in the AFM core, which is the commonly accepted origin of EB. Our simulations allow us to clarify the microscopic mechanisms of the observed EB behavior, not accessible in experiments.  相似文献   

5.
The effects of the magnitude of the uniaxial anisotropy of a ferromagnet and the cooling field on the noncollinearity between uniaxial anisotropy and induced unidirectional anisotropy in a ferromagnet/antiferromagnet bilayer system are investigated. A diagram of noncollinear anisotropies and relative negative (positive) exchange bias field dependence upon cooling field and uniaxial anisotropy of the ferromagnet is obtained. The numerical result shows that the emergence of noncollinear anisotropies originates from the action of the cooling field and uniaxial anisotropy of the ferromagnet. The noncollinearity strongly depends on the magnitude of cooling field and uniaxial anisotropy of the ferromagnet. Moreover, the effect of noncollinear anisotropies and applied field on asymmetric magnetization reversal is also investigated. Amazingly, when the magnetic field is applied collinearly with unidirectional anisotropy, the hysteresis loop of ferromagnet/antiferromagnet bilayers is always symmetric even if there are noncollinear anisotropies. Our results indicate that the asymmetry of the hysteresis loop only originates from the noncollinearity between the induced unidirectional anisotropy and the applied field, rather than from the noncollinearity between the uniaxial and unidirectional anisotropies.  相似文献   

6.
The size dependence of exchange bias field HE and coercivity Hc was studied by measuring exchange biased Fe-FeF2 dot arrays in comparison with an unstructured exchange biased Fe-FeF2 bilayer. The domain sizes in the ferromagnet (FM) and the antiferromagnet (AFM) play an important role for exchange bias (EB), and thus interesting phenomena may be expected when the size of an EB system becomes comparable to these sizes. We observe drastic changes of HE and Hc in nanostructured Fe-FeF2, which are unexpected because they appear even at a structure size which is too large for matching with AFM or FM domain size to play a role. We propose that under certain conditions the hysteresis loop is affected differently in the two branches of the reversal by shape anisotropy due to patterning. This is possible because the EB induces a reversal asymmetry already in the unpatterned bilayer system.  相似文献   

7.
The hysteresis loop shift in sub-100 nm ferromagnetic- (FM-)antiferromagnetic (AFM) nanostructures can be either enhanced or reduced with respect to continuous films with the same composition, with varying the AFM layer thickness. An enhancement of the coercivity and a reduction of the blocking temperature are also observed. These effects are mainly ascribed to the physical limitations that the dot sizes impose on the AFM domain size and the concomitant weakening of the pinning strength exerted by the AFM during magnetization reversal of the FM.  相似文献   

8.
Antidots of size 0.5 μm are prepared by patterning iron-nickel films with a focused ion beam. The magnetization distribution in antidot arrays is examined with Lorentz transmission electron microscopy. It is shown that one side of the array makes an angle of about 20° with the easy magnetic axis of the film. Magnetization reversal in the direction close to the easy magnetic axis starts with domain nucleation at the antidot edges that are perpendicular to the applied field and adjacent to the unpatterned region of the film, and propagates as the domain walls move. Magnetization reversal in the direction close to the hard magnetic axis starts with magnetization rotation outside the patterned region at the antidot edges and propagates as the domain walls execute a complicated motion. It is demonstrated that some areas between the edges of adjacent antidots can carry information bits. Results obtained are explained in terms of competition between the demagnetizing energy, energy of internal anisotropy, and misorientation effect. The feasibility of such structures as high-density storage elements is discussed.  相似文献   

9.
We investigated the reversal mechanism in a Co/CoO exchange bias bilayer with a pronounced magnetocrystalline anisotropy in the ferromagnet. The anisotropy, which is induced by the growth of a highly textured Co layer, imposes a distinct reversal mechanism along the magnetically easy and hard direction. It is shown that exchange bias can be induced along both directions, despite the magnetocrystalline anisotropy. The interplay between the magnetocrystalline anisotropy and exchange bias induces a different reversal mechanism for the subsequent reversals in the two crystallographic directions. Along the hard axis, the magnetization reverses according to the reversal mechanism observed before in polycrystalline exchange bias bilayers, i.e. domain wall nucleation and motion for the first reversal and coherent rotation for the subsequent ones. Along the easy axis, domain wall motion remains the dominant reversal mechanism and magnetization rotation has only a minor contribution.  相似文献   

10.
时钟  杜军  周仕明 《中国物理 B》2014,23(2):27503-027503
Since the exchange bias (EB) effect was discovered in the Co/CoO core-shell nanoparticles, it has been extensively studied in various ferromagnet (FM)/antiferromagnet (AFM) bilayers due to its crucial role in spintronics devices. In this article, we review the investigation of the EB in our research group. First, we outline basic features of the EB, including the effects of the constituent layer thickness, the microstructure and magnetization of the FM layers, and we also discuss asymmetric magnetization reversal process in wedged-FM/AFM bilayers. Secondly, we discuss the mechanisms of the positive EB and the perpendicular EB. Thirdly, we demonstrate the hysteretic behavior of the angular dependence of the EB and analyze the EB training effect. Finally, we discuss the roles of the rotatable anisotropy in the two phenomena.  相似文献   

11.
Exchange anisotropy in FM/AFM bilayers has given a lot of static magnetization properties such as enhanced coercivity and magnetization loop shifts. These phenomena are primarily from the effective anisotropies introduced into a ferromagnet by exchange coupling with a strongly anisotropic antiferromagnet. These effective anisotropies can also be used to explain the dynamic consequences of exchange-biased bilayers. In this article, the dynamic consequences such as exchange-induced susceptibility, exchange-induced permeability, and the corresponding domain wall characteristics in the exchange-biased structures of ferromagnet/antiferromagnet1/antiferromagnet2 are studied. The results show that the second antiferromagnetic layer can largely affect the dynamic consequences of exchange-biased bilayers. Especially in the case of critical temperature, the effects become more obvious. Practically, the exchange anisotropy of biased bilayer system can be tuned by exchange coupling with the second antiferromagnetic layer.  相似文献   

12.
It is found that the magnetization reversal of an array of superthin Co films coupled by the ferromagnetic exchange interaction through the Ag layers may result in a domain structure of an unexpected new type. Due to the incoherent different-sense spin rotation upon lowering the field perpendicular to the easy axis, the specific macrodomains first form in a sample. They are separated not by the Neél domain wall but by a wide transition region containing high-density microdomains of sizes correlating with the grain sizes in the films. Further magnetization reversal proceeds through the formation of standard domain walls in the macrodomain in a magnetostatic field at the plate edge and through their shifting toward the transition region. These processes are explained with taking into account the character of the revealed magnetic anisotropy dispersion.  相似文献   

13.
Distribution of a magnetic moment in an exchange-coupled bilayer Fe/SmCo epitaxial structure grown on a (110) MgO substrate is visualized by the magnetooptic indicator film technique. The direction and the magnitude of the effective magnetization in this structure are determined both under external magnetic fields of variable magnitude and direction and after the removal of these fields. It is shown that such a heterostructure is remagnetized by a nonuniform rotation of a magnetic moment both along the thickness of a sample and in its plane. A field antiparallel to the axis of unidirectional anisotropy gives rise to spin springs with opposite chiralities in different regions of the magnetically soft ferromagnetic layer. The contributions of these springs to the net magnetization cancel out, thus decreasing the averaged magnetic moment and the remanent magnetization without their rotation. When the external field deviates from the easy axis, the balance is violated and the sample exhibits a quasi-uniform rotation of the magnetic moment. Asymmetry in the rotation of the magnetic moment is observed under the reversal of the field as well as under repeated remagnetization cycles. It is established that a monochiral spin spring is also formed in a rotating in-plane magnetic field when the magnitude of the field exceeds the critical value. Possible mechanisms of remagnetization in this system are discussed with regard to the original disordered orientation of magnetization of the magnetically soft layer with respect to the easy axis, which is defined by the variance of unidirectional anisotropy axes of this layer on the interface.  相似文献   

14.
Experimentally an asymmetry of the reversal modes has been found in certain exchange bias systems. From a numerical investigation of the domain state model evidence is gained that this effect depends on the angle between the easy axis of the antiferromagnet and the applied magnetic field. Depending on this angle the ferromagnet reverses either symmetrically, e.g., by a coherent rotation on both sides of the loop, or the reversal is asymmetric with a nonuniform reversal mode for the ascending branch, which may even yield a zero perpendicular magnetization.  相似文献   

15.
Gapless magnons in a plane ferromagnet with normal axis anisotropy are shown to exist besides the usual gapped modes that affect spin dependent transport properties only above a finite temperature. These magnons are one-dimensional objects, in the sense that they are localized inside the domain walls that form in the film. They may play an essential role in the spin dependent scattering processes even down to very low temperatures.  相似文献   

16.
胡勇  杜安 《计算物理》2008,25(3):373-378
利用经典Heisenberg模型和Monte Carlo方法研究外磁场和反铁磁磁晶各向异性、交换相互作用对铁磁球均匀嵌入到反铁磁基体中的铁磁/反铁磁纳米体系磁滞回线的影响.模拟结果显示,外加反向最大磁场不同时,磁滞回线形状不同.当磁场正向增加时,体系的磁化强度会产生一个跃变,但跃变高度与反向场最大值无关.反铁磁磁晶各向异性越大,体系的交换偏置现象越明显,且磁化强度回到饱和值所需的外磁场越大.随着反铁磁基体交换相互作用的增大,在正向和负向磁场区域还可能出现新的磁滞现象.  相似文献   

17.
The magnetization reversal in exchange-biased ferromagnetic-antiferromagnetic (FM-AFM) bilayers is investigated. Different reversal pathways on each branch of the hysteresis loop, i.e., asymmetry, are obtained both experimentally and theoretically when the magnetic field is applied at certain angles from the anisotropy direction. The range of angles and the magnitude of this asymmetry are determined by the ratio between the FM anisotropy and the interfacial FM-AFM exchange anisotropy. The occurrence of asymmetry is linked with the appearance of irreversibility, i.e., finite coercivity, as well as with the maximum of exchange bias, increasing for larger anisotropy ratios. Our results indicate that asymmetric hysteresis loops are intrinsic to exchange-biased systems and the competition between anisotropies determines the asymmetric behavior of the magnetization reversal.  相似文献   

18.
We present the complete zero temperature phase diagram of a model for ultrathin films with perpendicular anisotropy. The whole parameter space of relevant coupling constants is studied in first order anisotropy approximation. Because the ground state is known to be formed by perpendicular stripes separated by Bloch walls, a standard variational approach is used, complemented with specially designed Monte Carlo simulations. We can distinguish four regimes according to the different nature of striped domains: a high anisotropy Ising regime with sharp domain walls, a saturated stripe regime with thicker walls inside which an in-plane component of the magnetization develops, a narrow canted-like regime, characterized by a sinusoidal variation of both the in-plane and the out of plane magnetization components, which upon further decrease of the anisotropy leads to an in-plane ferromagnetic state via a spin reorientation transition (SRT). The nature of domains and walls are described in some detail together with the variation of domain width with anisotropy, for any value of exchange and dipolar interactions. Our results, although strictly valid at T=0, can be valuable for interpreting data on the evolution of domain width at finite temperature, a still largely open problem.  相似文献   

19.
利用溶胶-凝胶法制备了一系列的La0.8Sr0.2Co1-xFexO3样品.通过研究在不同外加磁场下磁化强度和温度变化的关系发现,在较高的外场下La0.8Sr0.2Co1-xFexO3样品的磁性反转现象没有被观察到;在低场下La0.8Sr0.2Co1-xFexO3系统磁性反转现象被实现.这说明Fe的掺杂引起了La0.8Sr0.2Co1-xFexO3样品中铁磁和反铁磁之间的竞争,导致了La0.8Sr0.2Co1-xFexO3样品磁性反转;同时外加磁场的强弱影响了La0.8Sr0.2Co1-xFexO3系统磁性反转现象的发生,外加磁场增大使得在La0.8Sr0.2Co1-xFexO3样品中Co离子的自旋平行趋势更强,在铁磁和反铁磁之间的竞争中铁磁耦合占主导优势,因此在较高的外场下磁性反转现象没有被观察到.  相似文献   

20.
A mechanism to explain the gigantic unidirectional anisotropy of the velocity of domain walls, which includes the local rotation of the magnetization in front of a moving domain wall, initiated by radiated spin waves is proposed. Institute of General Physics, Russian Academy of Sciences. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 9, pp. 45–48, September, 1997.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号