首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
It is confirmed that one source of the large relative orbital momenta L of fragments in spontaneous and stimulated low-energy nuclear fission is quantum transverse zero-point wriggling vibrations of the fissioning system near its scission point. The angular distributions of fragments of low-energy photofission of actinide nuclei, calculated using the quantum theory of fission, are compared. Vibrations are allowed for by using parameter C w determined by Nix and Swiatecki. Agreement between the experimental and theoretical angular distributions for 234U, 236U, 238U, 238Pu, 240Pu, 242Pu nuclei is observed. The strong sensitivity of the theoretical angular distributions for 238Pu, 240Pu, 242Pu nuclei toward the choice of parameters of transient fissioning states at the external and internal fission barriers is demonstrated.  相似文献   

2.
Within quantum-mechanical fission theory, the angular distributions of fragments originating from the subthreshold photofission of the even-even nuclei 232Th, 234U, 236U, 238U, 238Pu, 240Pu, and 242Pu are analyzed for photon energies below 7 MeV. Special features of various fission channels are assessed under the assumption that the fission barrier has a two-humped shape. It is shown that the maximum value of the relative orbital angular momentum L m of fission fragments can be found upon taking into account deviations from the predictions of A. Bohr’s formula for the angular distributions of fission fragments. The result is L m ≈ 30. The existence of an “isomeric shelf” for the angular distributions of fragments from 236U and 238U photofission in the low-energy region is confirmed.  相似文献   

3.
The fission fragment angular distributions from reactions of 140-MeV4He ions with238U,209Bi and197Au have been studied. From the anisotropies in the angular distributions, values for? eff, the effective moment of inertia at the fission saddle point, have been estimated and compared with results obtained at lower bombarding energies. The derivation of? eff values has included corrections for the effects of incomplete fusion mechanisms on the orbital angular momentum distribution of the fissioning nuclei and for neutron evaporation prior to fission. The results are also compared with heavy-ion-induced fission data for systems of similar fissility. Also, examination of the forward-backward symmetry of the238U angular distribution substantiates other results which show that the fraction of fission reactions which follow complete fusion of the target and projectile is less than 0.5 for 140-MeV4He-ion bombardment of238U.  相似文献   

4.
Experimental data obtained previously for the energy-angular distribution of neutrons originating from the fission of 252Cf (spontaneous fission) and 235U (thermal-neutron-induced fission) nuclei are analyzed, the angle being measured with respect to the direction of fission-fragment motion. A regularity common to all independent experiments is revealed: at an angle of about 90°, there exists an excess of neutrons (30% for 252Cf and 60% for 235U) that does not admit explanation within the model of neutron emission from fully accelerated fragments. Two possible explanations of this experimental fact—neutron emission during the acceleration process and the existence of an additional source of neutrons (predominantly, prescission neutrons)—are considered. It is shown that the latter conjecture describes the observed features for both nuclei more adequately. The total yield of prescission neutrons and their energy and angular distributions are determined.  相似文献   

5.
The angular distributions of fragments originating from the binary fission of odd and odd-odd nuclei capable of undergoing spontaneous fission that are polarized by a strong magnetic field at ultralow temperatures and from the low-energy photofission of even-even nuclei that is induced by dipole and quadrupole photons are investigated. It is shown that the deviations of these angular distributions from those that are obtained on the basis of the A. Bohr formula make it possible to estimate the maximum relative orbital angular momentum of fission fragments, this estimate providing important information about the relative orientation of the fragment spins. The angular distributions of fragments originating from subthreshold fission are analyzed for the case of the 238U nucleus. A comparison of the resulting angular distributions with their experimental counterparts leads to the conclusion that the maximum relative orbital angular momentum of binary-fission fragments exceeds 20, the fragment spins having predominantly a parallel orientation. The possibility is considered for performing an experiment aimed at measuring the angular distributions of fragments of the spontaneous fission of polarized nuclei in order to determine both the spins of such nuclei and the maximum values of the relative orbital angular momenta of fission fragments.  相似文献   

6.
One-particle-inclusive measurements have been performed for the charge, kinetic energy and angular distributions of reaction products from238U +238U at 1 766MeV (7.42MeV/u) incident energy. The deep inelastic products exhibit features similar to those seen in reactions induced by medium heavy nuclei: increasing particle transfer is observed with increasing energy damping, the angular distributions are peaked near the grazing angle, they broaden significantly with increasing energy loss and/or charge transfer. The dominant reaction mechanism, however, is found to be sequential fission of one or both primary reaction products. The reconstructed primaryZ- andQ-value distributions show more particle transfer at a given energy loss than in other systems, i.e. the diffusion process seems to proceed colder in this system. This is confirmed by relatively large cross sections for surviving deep inelastic reaction products belowZ=92. A direct search forα-decay or fission of superheavy nuclei being produced in a deep inelastic reaction and being implanted in a surface barrier detector resulted in an upper cross section limit of 2 ×10?32cm2.  相似文献   

7.
Formation of angular distributions of fission fragments for the 16O + 232Th and 12C + 235,236U reactions has been analyzed within a dynamic approach. In this approach, the component of the total angular momentum along the fission axis K is considered as a fluctuating quantity and the corresponding relaxation time is assumed to be the main parameter controlling the evolution of this mode. Particular attention is paid to the analysis of the effect of initial distributions over K (formed during fusion) on the angular distribution of fission fragments of nuclei having fission barriers comparable with the nuclear temperatures.  相似文献   

8.
The electrofission angular distributions for 234U in the energy range 5.5 to 25 MeV were measured and are analyzed together with those obtained previously for 236U and 238U. The competition between the K = 0 and K = 1 fission channels following E2 excitation is established, showing a dominance of the K = 0 channel for near-barrier fission. The E2 fission strength functions for 234U, 236U and 238U are deduced as well, and the E2 fission probabilities (at energies below the pairing gap) are estimated. A substantial concentration of E2 strength near the fission barrier is found, in good agreement with earlier photofission angular-distribution studies.  相似文献   

9.
The results of an experiment aimed at searches for formally T-odd correlations in the angular distribution of prompt neutrons from the fission of 235U nuclei are presented. The experiment was performed in the MEPHISTO polarized cold-neutron beam from the Munich FRMII reactor. The correlation coefficient proved to be (−3.5 ± 3.4) × 10−5 for a three-vector correlation (TRI effect) and (−5.0 ± 3.4) × 10−5 for a five-vector correlation (ROT effect). This means that no significant effects were discovered within the measurement errors. A comparison with the analogous effects in the ternary fission of 235U nuclei was performed. The values of the corresponding correlations in the angular distribution of prompt fission gamma rays were refined.  相似文献   

10.
Integral fission cross sections in the system238U+238U were measured at beam energies below the interaction barrierV C. Scattering angle dependent probabilities and integral cross sections for Coulomb fission were calculated. It is concluded that earlier observed discrepancies between measured and calculated angular distributions for the one-neutron transfer product239U cannot be explained by sequential fission. Multi-nucleon transfer induced fission is observed down to energies (0.90±0.02)×VC.  相似文献   

11.
12.
Absolute electrofission cross sections for238U and232Th in the energy regionE e =7 ?65 MeV and fission fragment angular distributions forE e =7–30 MeV have been measured. The angular distributions show strong anisotropies for low energies. The relative dipole and quadrupole contributions as a function of excitation energy are discussed in terms of the low lying fission transition states above the fission barriers. The cross sections show significant deviations from the results of some earlier measurements, in particular in the energy region above the giant dipole resonance. From the difficulties of absolute electrofission cross section measurements and the ambiguities in their interpretation it is concluded that by this time the quantitative analysis of electrofission cross sections with respect to the contributions of the giant quadrupole resonances to the fission decay channel should be regarded as rather tentative.  相似文献   

13.
New results of the neutron-induced fission experiments carried out at the neutron time-of-flight spectrometer GNEIS of the PNPI are given. Angular distributions of fission fragments from the neutron-induced fission of 233U and 209Bi nuclei have been measured in the energy range 1–200 MeV using position sensitive multiwire proportional counters as fission fragment detector. The recent improvements of the measurement and data processing procedures are described. The data on anisotropy of fission fragments deduced from the measured angular distributions are presented in comparison with the experimental data of other authors.  相似文献   

14.
The angular distribution of neutrons emitted by elastic, inelastic and fission processes on235U were measured at the incident neutron energies of 1.5, 1.9, 2.3, 4.0, 4.5, 5.0 and 5.5 MeV using nanosecond time-of-flight technique. The differential elastic scattering cross sections and their angular distributions at all the seven energies are presented. The total elastic scattering cross sections, angle and energy integrated cross sections for the inelastically scattered neutrons in energy bands of 200 keV, fission cross sections and the angular distributions of fission neutrons were extracted at 1.5, 1.9 and 2.3 MeV incident neutron energies. The energy distributions of the prompt fission neutrons and of the inelastically scattered neutrons are given at the incoming neutron energies of 1.5, 1.9 and 2.3 MeV; and the average fission neutron energies and the inelastic neutron evaporation temperatures were also evaluated at these energies.  相似文献   

15.
The average multiplicity of gamma rays emitted by fragments originating from the fission of 226Th nuclei formed via a complete fusion of 18O and 208Pb nuclei at laboratory energies of 18O projectile ions in the range E lab = 78–198.5 MeV is measured and analyzed. The total spins of fission fragments are found and used in an empirical analysis of the energy dependence of the anisotropy of these fragments under the assumption that their angular distributions are formed in the vicinity of the scission point. The average temperature of compound nuclei at the scission point and their average angular momenta in the entrance channel are found for this analysis. Also, the moments of inertia are calculated for this purpose for the chain of fissile thorium nuclei at the scission point. All of these parameters are determined at the scission point by means of three-dimensional dynamical calculations based on Langevin equations. A strong alignment of fragment spins is assumed in analyzing the anisotropy in question. In that case, the energy dependence of the anisotropy of fission fragments is faithfully reproduced at energies in excess of the Coulomb barrier (E c.m. ? E B ≥ 30 MeV). It is assumed that, as the excitation energy and the angular momentum of a fissile nucleus are increased, the region where the angular distributions of fragments are formed is gradually shifted from the region of nuclear deformations in the vicinity of the saddle point to the region of nuclear deformations in the vicinity of the scission point, the total angular momentum of the nucleus undergoing fission being split into the orbital component, which is responsible for the anisotropy of fragments, and the spin component. This conclusion can be qualitatively explained on the basis of linear-response theory.  相似文献   

16.
The problem of describing T-odd asymmetries in ternary fission reactions of oriented nuclei is solved for the first time on the basis of quantum theory. Estimates of the T-odd asymmetry coefficients in the angular distributions of the reaction products are obtained using the spin density matrix of the oriented fissioning nucleus. It is demonstrated that experiments on observing T-odd asymmetries in the spontaneous fission of oriented nuclei are of interest because the T-odd asymmetry coefficients can be around an order of magnitude greater than similar coefficients in the fission of unoriented target nuclei induced by polarized neutrons.  相似文献   

17.
The concept of transition fission states, which was successfully used to describe the angular distributions of fragments for the spontaneous and low-energy induced fission of axisymmetric nuclei, proves to be correct if the spin projection onto the symmetry axis of a fissile nucleus is an integral of the motion for the external region from the descent of the fissile nucleus from the external fission barrier to the scission point. Upon heating a fissile nucleus in this region to temperatures of T ≈ 1 MeV (this is predicted by many theoretical models of the fission process), the Coriolis interaction uniformly mixes the possible projections of the fissile-nucleus spin for the case of low spin values, this leading to the loss of memory about transition fission states in the asymptotic region where the angular distributions of fragments are formed. Within quantum-mechanical fission theory, which takes into account deviations from A. Bohr’s formula, the angular distributions of fragments are calculated for spontaneously fissile nuclei aligned by an external magnetic field at ultralow temperatures, and it is shown that an analysis of experimental angular distributions of fragments would make it possible to solve the problem of spin-projection conservation for fissile nuclei in the external region.  相似文献   

18.
It is shown that the emergence of anisotropies in the angular distributions of fragments originating from the spontaneous and induced fission of oriented actinide nuclei is possible only if nonuniformities in the population of the projectionsM (K) of the fissile-nucleus spin onto the z axis of the laboratory frame (fissile-nucleus symmetry axis) appear simultaneously in the vicinity of the scission point but not in the vicinity of the outer saddle point of the deformation potential. The possibilities for creating the orientation of fissile nuclei for spontaneous and induced fission and the effect of these orientations on the anisotropies under analysis are considered. The role of Coriolis interaction as a unique source of the mixing of different-K fissile-nucleus states at all stages of the fission process is studied with allowance for the dynamical enhancement of this interaction for excited thermalized states of the nucleus involved that is characterized by a high energy density. It is shown that the absence of thermalization of excited states of the fissile nucleus that appear because of the effect of nonadiabaticity of its collective deformation motion in the vicinity of the scission point is a condition of conservation of the influence that transition fission states formed at the inner and outer fission barriers exerts on the distribution of the spin projections K for lowenergy spontaneous nuclear fission. It is confirmed that anisotropies observed in the angular distributions of fragments originating from the fission of nuclei that is induced by fast light particles (multiply charged ions) are due to the appearance of strongly excited equilibrium(nonequilibrium) states of the fissile nucleus in the vicinity of its scission point that have a Gibbs (non-Gibbs) distribution of projections K.  相似文献   

19.
Inclusive4He and4H energy spectra and heavy fragment coincidence correlations have been measured for reactions of 7.31 MeV/u238U with238U and?197Au targets. The H/He production cross sections are in the range 15–26 mb, and their emission spectra are very similar for the two systems. The observed strong kinematic shifts with angle are reproduced in shape and magnitude by Monte Carlo simulations of particle evaporation from projectile-like and target-like fragments, indicating competition between charged particle emission and sequential fission. No evidence is found for high energy charged particle emission associated with ultra-highZ composite systems. Heavy fragment measurements indicate an abundance of quasielastic and deeply inelastic reaction fragments, as well as sequential fission of target and projectile nuclei. For238U nuclei, the fission occurs predominantly in an asymmetric mode, reminiscent of fission at low excitation energy. For238+238U reactions in the vicinity of the grazing angle, the frequency of single sequential fission (with survival of the partner fragment) is twice as large as double sequential fission in which both the target and projectile undergo fission. In238U+197Au reactions, the survival probability of the heavy fragments is even greater. The surprisingly high survival probabilities of high-Z fragments imply a preponderance of very soft collisions in these very-heavy-ion reactions, at least at energies not very far over the Coulomb barrier.  相似文献   

20.
Correlations between folding angular distributions of fission fragments and the gamma-ray multiplicity are studied for 18O + 208Pb interactions at energies of the beam of 18O ions in the range E lab = 78–198.5 MeV. The probabilities are determined for complete-and incomplete-fusion processes inevitably followed by the fission of nuclei formed in these processes. It is found that the probability of incomplete fusion followed by fission increases with increasing energy of bombarding ions. It is shown that, for the incomplete-fusion process, folding angular distributions of fission fragments have a two-component structure. The width of folding angular distributions (FWHM) for complete fusion grows linearly with increasing energy of 18O ions. The multiplicity of gamma rays from fission fragments as a function of the linear-momentum transfer behaves differently for different energies of projectile ions. This circumstance is explained here by the distinction between the average angular momenta of participant nuclei in the fusion and fission channels, which is due to the difference in the probabilities of fission in the cases where different numbers of nucleons are captured by the target nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号