首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetR be the reals ≥ 0. LetF be the set of mapsf: {1, 2, ?,n} →R. Choosew ∈ F withw i = w(i) > 0. PutW i = w1 + ? + wi. Givenf ∈ F, define \(\bar f\) F by $$\bar f\left( i \right) = \frac{{\left\{ {w_i f\left( 1 \right) + \ldots + w_i f\left( i \right)} \right\}}}{{W_i }}.$$ Callf mean increasing if \(\bar f\) is increasing. Letf 1, ?, ft be mean decreasing andf t+1,?: ft+u be mean increasing. Put $$k = W_n^u \min \left\{ {w_i^{u - 1} W_i^{t - u} } \right\}.$$ Then $$k\mathop \sum \limits_{i = 1}^n w_i f_1 \left( i \right) \ldots f_{t + u} \left( i \right) \leqslant \mathop \prod \limits_{j = 1}^{t + u} (\mathop \sum \limits_{i = 1}^n w_i f_1 (i)).$$   相似文献   

2.
LetH(α) denote the class of regular functionsf(z) normalized so thatf(0)=0 andf′(0)=1 and satisfying in the unit discE the condition $$\operatorname{Re} \left\{ {(1 - \alpha )f'(z) + \alpha (1 + zf''(z)/f'(z))} \right\} > 0$$ for fixed α. It is known thatH(0) is a particular class NW of close-to-convex univalent functions. The authors show the following results:Theorem 1. Letf(z)H(α). Thenf(z)∈NW if α≤0 andzE.Theorem 2. Letf(z)∈NW. Thenf(z)H(α) in |z|=r<r α where i) \(r_\alpha = (1 + \sqrt {2\alpha } )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}\) , α≥0 and ii) \(r_\alpha = \sqrt {\frac{{1 - \alpha - \sqrt {\alpha (\alpha - 1)} }}{{1 - \alpha }}}\) , α<0. All results are sharp.Theorem 3. Iff(z)=z+a 2 z 2+a 3 z 3+... is inH(α) and if μ is an arbitrary complex number, then $$\left| {1 + \alpha } \right|\left| {a_3 - \mu a_2^2 } \right| \leqslant ({2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3})\max \left[ {1,\left| {1 + 2\alpha - {3 \mathord{\left/ {\vphantom {3 {2\mu }}} \right. \kern-\nulldelimiterspace} {2\mu }}(1 + \alpha )} \right|} \right].$$ .  相似文献   

3.
LetL be the space of rapidly decreasing smooth functions on ? andL * its dual space. Let (L 2)+ and (L 2)? be the spaces of test Brownian functionals and generalized Brownian functionals, respectively, on the white noise spaceL * with standard Gaussian measure. The Donsker delta functionδ(B(t)?x) is in (L 2)? and admits the series representation $$\delta (B(t) - x) = (2\pi t)^{ - 1/2} \exp ( - x^2 /2t)\sum\limits_{n = 0}^\infty {(n!2^n )^{ - 1} H_n (x/\sqrt {2t} )} \times H_n (B(t)/\sqrt {2t} )$$ , whereH n is the Hermite polynomial of degreen. It is shown that forφ in (L 2)+,g t(x)≡〈δ(B(t)?x), φ〉 is inL and the linear map takingφ intog t is continuous from (L 2)+ intoL. This implies that forf inL * is a generalized Brownian functional and admits the series representation $$f(B(t)) = (2\pi t)^{ - 1/2} \sum\limits_{n = 0}^\infty {(n!2^n )^{ - 1} \langle f,\xi _{n, t} \rangle } H_n (B(t)/\sqrt {2t} )$$ , whereξ n,t is the Hermite function of degreen with parametert. This series representation is used to prove the Ito lemma forf inL *, $$f(B(t)) = f(B(u)) + \int_u^t {\partial _s^ * } f'(B(s)) ds + (1/2)\int_u^t {f''} (B(s)) ds$$ , where? s * is the adjoint of \(\dot B(s)\) -differentiation operator? s .  相似文献   

4.
Letf be a reduced real indefinite binary quadratic form, having an arithmetic minimum that is the inverse of a left endpoint of a gap of the Markoff spectrum. Then the roots off are eventually periodic continued fractions, provided that $$\min \{ |f(p,q)|:p^2 + q^2 > 0,p,q \operatorname{int} egers\} $$ exists.  相似文献   

5.
Letη be a nondecreasing function on (0, 1] such thatη(t)/t decreases andη(+0)=0. LetfL(I n ) (I≡[0,1]. Set $${\mathcal{N}}_\eta f(x) = \sup \frac{1}{{\left| Q \right|\eta (\left| Q \right|^{1/n} )}} \smallint _Q \left| {f(t) - f(x)} \right|dt,$$ , where the supremum is taken over all cubes containing the pointx. Forη=t α (0<α≤1) this definition was given by A.Calderón. In the paper we prove estimates of the maximal functions ${\mathcal{N}}_\eta f$ , along with some embedding theorems. In particular, we prove the following Sobolev type inequality: if $$1 \leqslant p< q< \infty , \theta \equiv n(1/p - 1/q)< 1, and \eta (t) \leqslant t^\theta \sigma (t),$$ , then $$\parallel {\mathcal{N}}_\sigma {f} {\parallel_{q,p}} \leqslant c \parallel {\mathcal{N}}_\eta {f} {\parallel_p} .$$ . Furthermore, we obtain estimates of ${\mathcal{N}}_\eta f$ in terms of theL p -modulus of continuity off. We find sharp conditions for ${\mathcal{N}}_\eta f$ to belong toL p (I n ) and the Orlicz class?(L), too.  相似文献   

6.
LetT be a possibly unbounded linear operator in the Banach spaceX such thatR(t)=(t+T)?1 is defined onR +. LetS=TR(I?TR) and letB(.,.) denote the Beta function. Theorem 1.1.T is a scalar-type spectral operator with spectrum in [0, ∞) if and only if $$sup\left\{ {B\left( {k,k} \right)^{ - 1} \int_0^\infty {\left| {x*S^k \left( t \right)x} \right|{{dt} \mathord{\left/ {\vphantom {{dt} t}} \right. \kern-\nulldelimiterspace} t};\left\| x \right\| \leqslant 1,} \left\| {x*} \right\| \leqslant 1,k \geqslant 1} \right\}< \infty .$$ A “local” version of this result is formulated in Theorem 2.2.  相似文献   

7.
Let \(f(z): = \sum\nolimits_{j = 0}^\infty {a_j z^J } \) be entire, witha j≠0,j large enough, \(\lim _{J \to \infty } a_{j + 1} /a_J = 0\) , and, for someqC, \(q_j : = a_{j - 1} a_{j + 1} /a_j^2 \to q\) asj→∞. LetE mn(f; r) denote the error in best rational approximation off in the uniform norm on |z‖≤r, by rational functions of type (m, n). We study the behavior ofE mn(f; r) asm and/orn→∞. For example, whenq above is not a root of unity, or whenq is a root of unity, butq m has a certain asymptotic expansion asm→∞, then we show that, for each fixed positive integern, ,m→∞. In particular, this applies to the Mittag-Leffler functions \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /\Gamma (1 + j/\lambda )} \) and to \(f(z): = \sum\nolimits_{j = 0}^\infty {z^j /(j!)^{I/\lambda } } \) , λ>0. When |q‖<1, we also handle the diagonal case, showing, for example, that ,n→∞. Under mild additional conditions, we show that we can replace 1+0(1) n by 1+0(1). In all cases we show that the poles of the best approximants approach ∞ asm→∞.  相似文献   

8.
Letw be a “nice” positive weight function on (?∞, ∞), such asw(x)=exp(??x?α) α>1. Suppose that, forn≥1, $$I_n [f]: = \sum\limits_{j = 1}^n {w_{jn} } f(x_{jn} )$$ is aninterpolatory integration rule for the weightw: that is for polynomialsP of degree ≤n-1, $$I_n [P]: = \int\limits_{ - \infty }^\infty {P(x)w(x)dx.} $$ Moreover, suppose that the sequence of rules {I n} n=1 t8 isconvergent: $$\mathop {\lim }\limits_{n \to \infty } I_n [f] = \int\limits_{ - \infty }^\infty {f(x)w(x)dx} $$ for all continuousf:RR satisfying suitable integrability conditions. What then can we say about thedistribution of the points {x jn} j=1 n ,n≥1? Roughly speaking, the conclusion of this paper is thathalf the points are distributed like zeros of orthogonal polynomials forw, and half may bearbitrarily distributed. Thus half the points haveNevai-Ullmann distribution of order α, and the rest are arbitrarily distributed. We also describe the possible distributions of the integration points, when the ruleI n has precision other thann-1.  相似文献   

9.
Letf be an entire function (in Cn) of exponential type for whichf(x)=0(?(x)) on the real subspace \(\mathbb{R}^w (\phi \geqslant 1,{\mathbf{ }}\mathop {\lim }\limits_{\left| x \right| \to \infty } \phi (x) = \infty )\) and ?δ>0?Cδ>0 $$\left| {f(z)} \right| \leqslant C_\delta \exp \left\{ {h_s (y) + S\left| z \right|} \right\},z = x + iy$$ where h, (x)=sup〈3, x〉, S being a convex set in ?n. Then for any ?, ?>0, the functionf can be approximated with any degree of accuracy in the form p→ \(\mathop {\sup }\limits_{x \in \mathbb{R}^w } \frac{{\left| {P(x)} \right|}}{{\varphi (x)}}\) by linear combinations of functions x→expi〈λx〉 with frequenciesX belonging to an ?-neighborhood of the set S.  相似文献   

10.
LetL(x) denote the number of square-full integers not exceedingx. It is well-known that $$L\left( x \right) \sim \frac{{\zeta \left( {{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \right)}}{{\zeta \left( 3 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + \frac{{\zeta \left( {{2 \mathord{\left/ {\vphantom {2 3}} \right. \kern-\nulldelimiterspace} 3}} \right)}}{{\zeta \left( 2 \right)}}x^{{1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}} ,$$ whereζ(s) denotes the Riemann Zeta function, LetΔ(x) denote the error function in the asymptotic formula forL(x). On the assumption of the Riemann hypothesis (R.H.), it is known that $$\Delta x = O\left( {x^{13/81 + 8} } \right)$$ for everyε > 0. In this paper, we prove on the assumption of R.H. that $$\frac{1}{x}\int\limits_x^1 {\left| {\Delta \left( t \right)} \right|dt = O\left( {x^{1/10 + ^8 } } \right)} .$$ In fact, we prove a more general result. We conjecture that $$\Delta x = O\left( {x^{1/10 + ^8 } } \right)$$ under the assumption of the R.H.  相似文献   

11.
In this paper one considers methods which enable one to determine the distribution of certain functionals of a Brownian motion process. Among such functionals we have: the positive continuous additive functional of a Brownian motion, defined by the formula $$A\left( t \right) = \int\limits_{ - \infty }^\infty {\hat t\left( {t, y} \right)dF\left( y \right),} $$ where \(\hat t\left( {t, y} \right)\) is the Brownian local time process while F(y) is a monotonically increasing right continuous function; the functional $$B\left( t \right) = \mathop {\mathop \smallint \limits_{ - \infty } }\nolimits^\infty f\left( {y,\hat t\left( {t, y} \right)} \right)dy,$$ where f(y, x) is a continuous function; and the functional $$C\left( t \right) = \mathop {\mathop \smallint \limits_0 }\nolimits^t f\left( {w\left( s \right),\hat t\left( {sr} \right)} \right)ds$$ As an application of these methods one considers some concrete functionals such that \(\hat t^{ - 1} \left( z \right) = \min \left\{ {s:\hat t\left( {s, o} \right) = z} \right\},\mathop {\mathop \smallint \limits_{ - \infty } }\nolimits^\infty \hat t^2 \left( {t, y} \right)dy,\mathop {\sup }\limits_{y \in R^1 } \hat t\left( {T, y} \right)\) , where T is an exponential random time, independent of \(\hat t\left( {t, y} \right)\) .  相似文献   

12.
LetG be a simple graph and let $\bar G$ denotes its complement. We say thatG is integral if its spectrum consists entirely of integers. If $\overline {\alpha K_a \cup \beta K_b } $ is integral we show that it belongs to the class of integral graphs $$\overline {[\frac{{kt}}{\tau }x_o + \frac{{mt}}{\tau }z]K(t + \ell n)k + \ell m \cup [\frac{{kt}}{\tau }y_o + \frac{{(t + \ell n)k + \ell m}}{\tau }z]nK\ell m,} $$ where (i) t, k, l, m, n ∈ ? such that (m, n) =1, (n, t) =1 and (l, t)=1; (ii) τ=((t+ln)k+lm, mt) such that τ| kt; (iii) (x0, y0) is aparticular solution of the linear Diophantine equation ((t+ln)k+lm)x-(mt)y=τ and (iv) z≥z0 where z0 is the least integer such that $(\frac{{kt}}{\tau }x_0 + \frac{{mt}}{\tau }z_0 ) \geqslant 1$ and $(\frac{{kt}}{\tau }y_0 + \frac{{(t + \ell n)k + \ell m}}{\tau }z_0 ) \geqslant 1$ .  相似文献   

13.
LetX be ann-element set and letA and? be families of subsets ofX. We say thatA and? are crosst-intersecting if |A ∩ B| ≥ t holds for all A ∈A and for allB ∈ ?. Suppose thatA and ? are crosst-intersecting. This paper first proves a crosst-intersecting version of Harper's Theorem:
  1. There are two crosst-intersecting Hamming spheresA 0,? 0 with centerX such that |A| ≤ |A 0| and|?| ≤ |? 0| hold.
  2. Suppose thatt ≥ 2 and that the pair of integers (|A) is maximal with respect to direct product ordering among pairs of crosst-intersecting families. Then,A and? are Hamming spheres with centerX.
Using these claims, the following conjecture of Frankl is proven:
  1. Ifn + t = 2k ? 1 then |A| |?| ≤ max \(\left\{ {\left( {K_k^n + \left( {_{k - 1}^{n - 1} } \right)} \right)^2 ,K_k^n K_{k - 1}^n } \right\}\) holds, whereK l n is defined as \(\left( {_n^n } \right)\left( {_{n - 1}^n } \right) + \cdots + \left( {_l^n } \right).\)
  2. Ifn + t = 2k then |A| |? ≤ (K k n )2 holds.
The extremal configurations are also determined.  相似文献   

14.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

15.
Let \(f(z) = \sum\limits_{h = 0}^\infty {f_h z^h } \) be a power series with positive radius of convergenceR f ≤1,f h algebraic and lacunary in the following sense: Let {r n }, {s n } be two infinite sequences of integers, satisfying $$0 = s_0 \leqslant r_1< s_1 \leqslant r_2< s_2 \leqslant r_3< s_3 \leqslant ..., \mathop {lim}\limits_{n \to \infty } (s_n /F(n)) = \infty $$ such that $$f_h = 0 if r_n< h< s_n ,f_{r_n } \ne 0,f_{s_n } \ne 0 for n = 1,2,3,...;$$ F(n) denotes a certain function ofn, dependent onr n and \(f_0 ,f_1 ,f_2 , \ldots f_{r_n } \) . Using ideas from a note ofK. Mahler, among other results the following main theorem is proved: The function valuef(α) (with α algebraic, 0<|α|<R f ) is algebraic if and only if there exists a positive integerN=N(α) such that $$P_n (\alpha ): = \sum\limits_{h = s_n }^{r_{n + 1} } {f_h \alpha ^h = 0 for all n \geqslant N.} $$   相似文献   

16.
Given a function $\mathbb{L}_2 $ (?), its Fourier transform $g(x) = \hat f(x) = F[f](x) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {f(x)e^{ - ixt} dt} ,f(t) = F^{ - 1} [g](t) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {g(x)e^{ - ixt} dx} $ and the inverse Fourier transform are considered in the space f ε $\mathbb{L}_2 $ (?). New estimates are presented for the integral $\int\limits_{|t| \geqslant N} {|g(t)|^2 dt} = \int\limits_{|t| \geqslant N} {|\hat f(t)|^2 dt} ,N \geqslant 1,$ in the vase of f ε $\mathbb{L}_2 $ (?) characterized by the generalized modulus of continuity of the kth order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.  相似文献   

17.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

18.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

19.
20.
We show that under suitable conditions $$\begin{gathered} E_x f\left\{ {a + \int_0^t \beta \left[ {b + \int_0^s {\alpha \left( {X_r } \right)dr, c + s, X_s } } \right]ds, b + \int_0^t {\alpha \left( {X_s } \right)ds, c + t, X_t } } \right\} \hfill \\ = e^{tG} f\left[ {a, b, c, x} \right] \hfill \\ \end{gathered} $$ whereX t is a Brownian motion andG is the generator of a (C 0) contraction semigroupe tG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号