首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two important mechanisms for electron transfer processes at boron-doped diamond electrodes involving the oxidation of tetramethylphenylenediamine (TMPD) dissolved in aqueous solution and the oxidation of tetrahexylphenylenediamine (THPD) deposited in the form of microdroplets and immersed into aqueous eletrolyte solution are reported. For TMPD, the first oxidation step in aqueous solution follows the equation: Remarkably slow heterogeneous kinetics at a H-plasma-treated boron-doped diamond electrode are observed, consistent with a process following a pathway more complex than outer-sphere electron transfer. At the same boron-doped diamond electrode surface a deposit of THPD undergoes facile oxidation following the equation: This oxidation and re-reduction of the deposited liquid material occurs at the triple interface organic droplet|diamond|aqueous electrolyte and is therefore an example of a facile high-current-density process at boron-doped diamond electrodes due to good electrical contact between the deposit and the diamond surface. Received: 3 February 2000 / Accepted: 18 February 2000  相似文献   

2.
We report linear sweep and square wave voltammetric studies on glucose oxidation at boron-doped diamond (BDD) electrodes in an alkaline medium in efforts to evaluate the techniques for electrochemically assaying glucose. The bare BDD electrode showed good linear responses to glucose oxidation for a concentration range from 0.5 to 10 mM glucose, which well encompasses the physiological range of 3-8 mM. The BDD electrodes did not experience interferences from ascorbic acid or uric acid during glucose detection. This method, when applied to real blood samples, gave results similar to those obtained by a commercial glucose monitor.  相似文献   

3.
The electrochemical characterization of boron-doped polycrystalline diamond thin-film (BDF) electrodes was studied using the anodic scan after concentrating lead in 0.1 mol/L KCl – 41 mol/L Hg(NO3)2 and 0.1 mol/L KNO3 – 0.01 mol/L HNO3 – 41 mol/L Hg(NO3)2; accumulation voltage was –0.90 V. The results obtained were compared with those given by glassy carbon (GC) electrodes and proved that the BDF electrodes offered high sensitivity, good precision and extreme stability over a 2-month period. These electrodes provided good resolving power for the determination of lead and cadmium and gave satisfactory results in the analysis of a pure water sample.  相似文献   

4.
The electrochemical characterization of boron-doped polycrystalline diamond thin-film (BDF) electrodes was studied using the anodic scan after concentrating lead in 0.1 mol/L KCl - 41 micromol/L Hg(NO(3))(2) and 0.1 mol/L KNO(3) - 0.01 mol/L HNO(3) - 41 micromol/L Hg(NO(3))(2); accumulation voltage was -0.90 V. The results obtained were compared with those given by glassy carbon (GC) electrodes and proved that the BDF electrodes offered high sensitivity, good precision and extreme stability over a 2-month period. These electrodes provided good resolving power for the determination of lead and cadmium and gave satisfactory results in the analysis of a pure water sample.  相似文献   

5.
Recently, the synthesis of boron-doped diamond electrodes on different substrates and shapes have reached a promising development stage. Now, these electrodes can also be effectively used to destroy toxic or biorefractory organics in real effluents, such as municipal wastewaters effluents, hospital wastewaters, groundwater, petrochemical effluent, wastewaters from agri–food activities, and so on. The results of this mini-review show that BDD is effectively even for such real effluents, allowing the removal of pollutants under several different conditions. Nevertheless, further efforts are necessary to reach a wider market; in particular, the next stages must face the optimization of cell design and the integration of the electrochemical system with other water treatment and renewable energy sources.  相似文献   

6.
Vertically aligned boron-doped diamond nanorod forests (BDDNF) were successfully fabricated by depositing a diamond film onto silicon nanowires (SiNWs) using hot filament chemical vapor deposition (HFCVD). The boron-doped diamond nanorods were characterized by Raman spectroscopy and scanning electron microscopy (SEM). The BDDNF obtained from the SiNWs on the silicon wafer could be directly used as an electrode and its electrochemical behaviour is discussed here. Compared to a flat boron-doped diamond (BDD) electrode, the BDDNF electrode showed high sensitivity in the amperometric detection of adenine.  相似文献   

7.
The surface homogeneity of boron-doped diamond electrodes is variable and depends on anodic polarization conditions. The differentiation factor is the gradual and localized change in surface termination. A series of measurements under different polarization conditions was performed in order to investigate the scale of this effect. Nanoscale impedance microscopy (NIM) revealed large variation of surface resistance in individual grains. Based on the obtained results, we claim that the level of electrochemical heterogeneity significantly depends on the crystallographic texture of BDD. Modification of boron-doped diamond surface termination under anodic oxidation is assumed to be a multistage process.  相似文献   

8.
The treatment or disposal of concentrates generated from the filtrative treatment of water is rapidly becoming a factor of major environmental concern. This preliminary study discusses a novel approach in the abatement of reverse osmosis membrane retentate i.e. electrochemical oxidation. The recalcitrant organic constituents as well as the ammonia nitrogen in the retentate could be readily oxidised using boron-doped diamond electrodes. From the model fitted to these data, a constant removal rate and current efficiency was calculated. Analysis of the inorganic chlorinated species revealed that the oxidation mechanism was mainly due to the indirect oxidative action of electrogenerated hypochlorite.  相似文献   

9.
This review overviews recent reports on the electroanalytical applications of boron-doped diamond (BDD) electrodes. Because BDD electrodes have excellent features for electroanalysis, such as wide potential window, low background current, electrochemical stability, and fouling resistance, they can be useful for sensitive and stable detection of various substances, including drugs, bio-related substances, metal ions, and organic pollutants. Many articles have reported high-sensitivity detection of real samples, demonstrating that this electrode material is practically applicable. Surface modification of the BDD electrodes using metal nanoparticles, nanocarbons, and polymers can increase the sensitivity of the electrochemical detection. Furthermore, research on the electroanalytical device equipped with BDD electrodes will be expanded by combining peripheral technologies related to the device fabrication.  相似文献   

10.
This brief review is focussed on the recent progress in studies of the heterogeneous electrochemical behaviour of various boron-doped materials extending from zero-dimensional particles through polycrystalline or nanostructured three-dimensional surfaces. A boron-doped diamond reveals large heterogeneities induced by numerous factors, inter alia multi-faceted crystallinity, inhomogeneous boron concentration, sp2/sp3-carbon ratio, surface terminations and grain size distribution. We also present single nanodiamond particles and a nanostructured diamond, which are fabricated by either a top-down or a bottom-up procedure. Nanoarchitectured surfaces allow high areas and large aspect ratios to be achieved, exhibiting highly heterogeneous charge-transfer performance for catalytic, sensing and energy applications. We have anticipated multi-factor-originated heterogeneities of various boron-doped diamond surfaces displaying the essential fabrication and diagnostic methodologies and critically reviewing their benefits and drawbacks.  相似文献   

11.
The electrochemical oxidation of homocysteine was studied at as-deposited and anodized (oxidized) boron-doped diamond (BDD) thin film electrodes with cyclic voltammetry, flow injection analysis and high-pressure liquid chromatography with amperometric detection. At anodized boron-doped diamond electrodes, highly reproducible, well-defined cyclic voltammograms for homocysteine oxidation were obtained in acidic media, while as-deposited diamond did not provide a detectable signal. In alkaline media, however, the oxidation response was obtained both at as-deposited and anodized diamond electrodes. The potential sweep rate dependence of homocysteine oxidation (peak currents for 1 mM homocysteine linearly proportional to v(1/2), within the range of 0.01 to 0.3 V s(-1)) indicates that the oxidation involves a diffusing species, with negligible adsorption on the BDD surface at this concentration. In the flow system, BDD exhibited a highly reproducible amperometric response, with a peak variation less than 2%. An extremely low detection limit (1 nM) was obtained at 1.6 V vs. Ag/AgCl. In addition, the determination of homocysteine in a standard mixture with aminothiols and disulfide compounds by means of isocratic reverse-phase HPLC with amperometric detection at diamond electrodes has been investigated. The results showed excellent separation, with a detection limit of 1 pmol and a linear range of three orders of magnitude.  相似文献   

12.
Most approaches to electron conduction from electrode to the enzyme requires the use of mediators – molecular relays which can take electrons from the electrode and deliver them to the redox sites of the enzyme. In the present paper, the biocatalytic reduction of oxygen to water in the presence of laccase is shown to proceed on the boron-doped diamond at highly positive potentials and without any additional mediator. The onset of catalytic reduction current appears at 0.805 V vs. NHE in solutions of pH 5.2. Laccase is either dissolved in the solution or trapped on the BDD electrode in a thin film of lipidic cubic phase. The remarkable stability of the modified electrode, avoiding the use of mediators and positive potential of the dioxygen reduction process make the BDD–laccase system especially interesting for applications in electrochemical sensing and microbiofuel cells.  相似文献   

13.
Highly boron-doped diamond electrodes are characterized voltammetrically employing Ru(NH3)63+/2+, Fe(CN)63−/4−, benzoquinone/hydroquinone, and cytochrome c redox systems. The diamond electrodes, which are polished to nanometer finish, are initially `activated' electrochemically and then pretreated by oxidation, reduction, or polishing. All electrodes give reversible cyclic voltammetric responses for the reduction of Ru(NH3)63+ in aqueous solution.Redox systems other than Ru(NH3)63+/2+ show characteristic electrochemical behavior as a function of diamond surface pretreatment. In particular, the horse heart cytochrome c redox system is shown to give reversible voltammetric responses at Al2O3 polished boron-doped diamond electrodes. No voltammetric response for cytochrome c is detected at anodically pretreated diamond electrodes. The observations are attributed to preferential interaction of the polished diamond surface with the reactive region of the cytochrome c molecule and low interference due to a lack of protein electrode fouling.  相似文献   

14.
Boron-doped semiconducting diamond films were prepared using BF3 by microwave plasma assisted chemical vapor deposition. B-doping was confirmed by SIMS and Raman spectroscopic measurements and the B-doping levels were estimated. Electrochemical behaviors of boron-doped diamond thin-film electrodes prepared using B2H6 and BF3 were studied by measuring cyclic voltammograms for anodic oxidation of 1,4-difluorobenzene in the liquid electrolyte, neat Et4NF·4HF. The results of the direct thermal interaction of elemental fluorine with hydrogenated and oxidized diamond surfaces are also presented.  相似文献   

15.
Ji X  Banks CE  Compton RG 《The Analyst》2005,130(10):1345-1347
Boron-doped diamond electrodes are shown to exhibit well-defined analytically useful voltammetric signals for the electrochemical oxidation of ammonia in aqueous solutions in comparison to commonly used carbon based electrode substrates. Proof-of-concept is shown for the construction of a miniature amperometric ammonia gas sensor utilising conductive boron-doped diamond.  相似文献   

16.
Electrochemical detection of sugar-related compounds was conducted using a boron-doped diamond (BDD) electrode as a detector for flow-injection analysis (FIA). Sugar-related compounds oxidize at high applied potentials, for which the BDD electrode is suitable for electrochemical measurements. Conditions for an FIA system with a BDD detector were optimized, and the following detection limits were achieved for sugar-related compounds: monosaccharides, 25-100 pmol; sugar alcohols, 10 pmol; and oligosaccharides, 10 pmol. The detection limit for monosaccharide D-glucose (Glu) was 105 pmol (S/N = 3). A linear range was acquired from the detection limit to 50 nmol, and the relative standard deviation was 0.65% (20 nmol, n = 6). A high-performance liquid chromatography (HPLC) column was added to the system between the sample injector and the detector and detection limits to the picomole level were achieved, which is the same for the HPLC system and the FIA system. The electrochemical oxidation reaction of Glu was examined using cyclic voltammetry with the BDD detector. The reaction proved to be irreversible, and proceeded according to the following two-step mechanism: (1) application of a high potential (2.00 V vs. Ag/AgCl) to the electrode causes water to electrolyze on the electrode surface with the simultaneous generation of a hydroxyl radical on the surface, and (2) the hydroxyl radical indirectly oxidizes Glu. Thus, Glu can be detected by an increase in the oxidation current caused by reactions with hydroxy radicals.  相似文献   

17.
In situ microwave activation has been applied to the electro-deposition and stripping of palladium metal (which is widely used as a catalyst) at cavitation resistant boron-doped diamond electrodes. Focused microwave radiation leading to heating, boiling, and cavitation is explored as an option to improve the speed and sensitivity of the analytical detection procedure. The deposition and anodic stripping of palladium by linear sweep voltammetry in 0.1 M KCl (pH 2) solution and at boron-doped diamond electrodes is shown to be strongly enhanced by microwave activation due to both (i) the increase in mass transport and (ii) the increase in the kinetic rate of deposition and stripping.The temperature at the electrode surface is calibrated with the reversible redox couple Fe(CN)64−/Fe(CN)63− and found to be reach 380 K. In the presence of microwave radiation, the potential of onset of the deposition of palladium is strongly shifted positive from −0.4 to +0.1 V versus SCE. The optimum potential for deposition in the presence of microwaves is −0.4 V versus SCE and the anodic stripping peak current is shown to increase linearly with deposition time. Under these conditions, the stripping peak current varies linearly with the palladium concentration down to ca. 2 μM. At concentration lower than this a logarithmic variation of the stripping peak current with concentration is observed down to ca. 0.1 μM (for 5 min pre-concentration in presence of microwave radiation).  相似文献   

18.
Highly conductive boron-doped diamond (BDD) electrodes are well suited for performing electrochemical measurements of nucleic acids in aqueous solution under diffusion-only control. The advantageous properties of this electrodic material in this context include reproducibility and the small background currents observed at very positive potentials, along with its robustness under extreme conditions so offering promising capabilities in future applications involving thermal heating or ultrasonic treatment. tRNA, single and double stranded DNA and 2'-deoxyguanosine 5'-monophosphate (dGMP) have been studied and well defined peaks were observed in all cases, directly assignable to the electro-oxidation of deoxyguanosine monophosphate.  相似文献   

19.
Yanli Zhou  Jinfang Zhi 《Talanta》2009,79(5):1189-34
Boron-doped diamond (BDD) electrodes outperform conventional electrodes in terms of high stability, chemical inertness, wide potential window and low background current. Combining the superior properties of BDD electrodes with the merits of biosensors, such as specificity, sensitivity, and fast response, amperometric biosensors based on BDD electrodes have attracted the interests of many researchers. In this review, the latest advances of BDD electrodes with different surfaces including hydrogen-terminated, oxygen-terminated, metal nanoparticles-modified, amine-terminated, and carboxyl-terminated thin films, and microelectrodes, for the construction of various biosensors or the direct detection of biomolecules were demonstrated. The future trends of BDD electrodes in biosensing were also discussed.  相似文献   

20.
The anodic treatment of guaiacol derivatives on boron-doped diamond electrodes (BDD) provides a direct access to nonsymmetrical biphenols, which would require a multistep sequence by conventional methods. Despite the destructive nature of BDD anodes they can be exploited for chemical synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号