首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Idiopathic pulmonary fibrosis (IPF) is a progressive, life-threatening lung disease characterized by the proliferation of myofibroblasts and deposition of extracellular matrix that results in irreversible distortion of the lung structure and the formation of focal fibrosis. The molecular mechanism of IPF is not fully understood, and there is no satisfactory treatment. However, most studies suggest that abnormal activation of transforming growth factor-β1 (TGF-β1) can promote fibroblast activation and epithelial to mesenchymal transition (EMT) to induce pulmonary fibrosis. Deglycosylated azithromycin (Deg-AZM) is a compound we previously obtained by removing glycosyls from azithromycin; it was demonstrated to exert little or no antibacterial effects. Here, we discovered a new function of Deg-AZM in pulmonary fibrosis. In vivo experiments showed that Deg-AZM could significantly reduce bleomycin-induced pulmonary fibrosis and restore respiratory function. Further study revealed the anti-inflammatory and antioxidant effects of Deg-AZM in vivo. In vitro experiments showed that Deg-AZM inhibited TGF-β1 signaling, weakened the activation and differentiation of lung fibroblasts, and inhibited TGF-β1-induced EMT in alveolar epithelial cells. In conclusion, our findings show that Deg-AZM exerts antifibrotic effects by inhibiting TGF-β1-induced myofibroblast activation and EMT.  相似文献   

2.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with multiple causes, characterized by excessive myofibrocyte aggregation and extracellular matrix deposition. Related studies have shown that transforming growth factor-β1 (TGF-β1) is a key cytokine causing fibrosis, promoting abnormal epithelial–mesenchymal communication and fibroblast-to-myofibroblast transition. Fedratinib (Fed) is a marketed drug for the treatment of primary and secondary myelofibrosis, targeting selective JAK2 tyrosine kinase inhibitors. However, its role in pulmonary fibrosis remains unclear. In this study, we investigated the potential effects and mechanisms of Fed on pulmonary fibrosis in vitro and in vivo. In vitro studies have shown that Fed attenuates TGF-β1- and IL-6-induced myofibroblast activation and inflammatory response by regulating the JAK2/STAT3 signaling pathway. In vivo studies have shown that Fed can reduce bleomycin-induced inflammation and collagen deposition and improve lung function. In conclusion, Fed inhibited inflammation and fibrosis processes induced by TGF-β1 and IL-6 by targeting the JAK2 receptor.  相似文献   

3.
Polyopes affinis is a red algal species commonly found on the South coast and near Jeju Island, Korea. This study aimed to determine whether P. affinis extracts can inhibit the pathogenesis of T-helper-2 (Th2)-mediated inflammation in a human keratinocyte cell line of atopic dermatitis (AD). Cells were incubated with 10 ng/mL of interferon gamma (IFN-γ) and 10 ng/mL of tumor necrosis factor-alpha (TNF-α) at various concentrations of PAB (10, 30, and 60 µg/mL) and PAA (100, 500, and 1000 µg/mL) extracts. A gene-ontology (GO)-enrichment analysis revealed that PAB significantly enriched the genes associated with biological processes such as cell adhesion, immune response, inflammation, and chemokine-mediated pathways. PAB suppressed the expression of the secretory proteins and mRNAs that are associated with the thymus and the production of activation-regulated chemokines (TARC/CCL17) and macrophage-derived chemokines (MDC/CCL22). The effect of the extract on mitogen-activated protein kinases (MAPKs) was related to its inhibition of TARC/CCL17 and MDC/CCL22 production by blocking NF-κB and STAT1 activation. These results suggest that seaweed extract may improve AD by regulating pro-inflammatory chemokines. In conclusion, we first confirmed the existence of phloroglucinol, a polyphenol formed from a precursor called phlorotannin, which is present in PAB, and this result proved the possibility of PAB being used as a treatment for AD.  相似文献   

4.
Despite the high prevalence of osteoarthritis (OA) in older populations, disease-modifying OA drugs (DMOADs) are still lacking. This study was performed to investigate the effects and mechanisms of the small molecular drug salicin (SA) on OA progression. Primary rat chondrocytes were stimulated with TNF-α and treated with or without SA. Inflammatory factors, cartilage matrix degeneration markers, and cell proliferation and apoptosis markers were detected at the mRNA and protein levels. Cell proliferation and apoptosis were evaluated by EdU assays or flow cytometric analysis. RNA sequencing, molecular docking and drug affinity-responsive target stability analyses were used to clarify the mechanisms. The rat OA model was used to evaluate the effect of intra-articular injection of SA on OA progression. We found that SA rescued TNF-α-induced degeneration of the cartilage matrix, inhibition of chondrocyte proliferation, and promotion of chondrocyte apoptosis. Mechanistically, SA directly binds to IRE1α and occupies the IRE1α phosphorylation site, preventing IRE1α phosphorylation and regulating IRE1α-mediated endoplasmic reticulum (ER) stress by IRE1α-IκBα-p65 signaling. Finally, intra-articular injection of SA-loaded lactic-co-glycolic acid (PLGA) ameliorated OA progression by inhibiting IRE1α-mediated ER stress in the OA model. In conclusion, SA alleviates OA by directly binding to the ER stress regulator IRE1α and inhibits IRE1α-mediated ER stress via IRE1α-IκBα-p65 signaling. Topical use of the small molecular drug SA shows potential to modify OA progression.Subject terms: Osteoarthritis, Molecularly targeted therapy, Single-molecule biophysics, Drug development  相似文献   

5.
Chronic UVA exposure results in elevated reactive oxygen species in skin which leads to photoaging characterized as upregulated matrix metalloproteinase (MMP)-1 and loss of collagen. Therefore, natural antioxidants are hailed as promising agents to be utilized against photoaging. In the current study, reynosin and santamarine, two known sesquiterpene lactones isolated from Artemisia scoparia, were analyzed for their anti-photoaging properties in UVA-irradiated human dermal fibroblasts (HDFs). Results showed that UVA irradiation (8 J/cm2) upregulated the MMP-1 secretion and expression, and suppressed collagen production, which were significantly reverted by santamarine treatment (10 µM). Although both reynosin and santamarine exhibited ROS scavenging abilities, reynosin failed to significantly diminish UVA-stimulated MMP-1 release. UVA-irradiated HDFs showed increased collagen production when treated with santamarine. As a mechanism to suppress MMP-1, santamarine significantly suppressed the UVA-induced phosphorylation of p38 and JNK and nuclear translocation of p-c-Fos and p-c-Jun. Santamarine promoted collagen I production via relieving the UVA-induced suppression on TGF-β and its downstream activator Smad2/3 complex. Antioxidant properties of santamarine were also shown to arise from stimulating Nrf2-dependent expression of antioxidant enzymes SOD-1 and HO-1 in UVA-irradiated HDFs. In conclusion, santamarine was found to be a promising natural antioxidant with anti-photoaging properties against UVA-induced damages in HDFs.  相似文献   

6.
Osteoporosis is a systemic metabolic bone disorder that is caused by an imbalance in the functions of osteoclasts and osteoblasts and is characterized by excessive bone resorption by osteoclasts. Targeting osteoclast differentiation and bone resorption is considered a good fundamental solution for overcoming bone diseases. β-boswellic acid (βBA) is a natural compound found in Boswellia serrata, which is an active ingredient with anti-inflammatory, anti-rheumatic, and anti-cancer effects. Here, we explored the anti-resorptive effect of βBA on osteoclastogenesis. βBA significantly inhibited the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by receptor activator of nuclear factor-B ligand (RANKL) and suppressed bone resorption without any cytotoxicity. Interestingly, βBA significantly inhibited the phosphorylation of IκB, Btk, and PLCγ2 and the degradation of IκB. Additionally, βBA strongly inhibited the mRNA and protein expression of c-Fos and NFATc1 induced by RANKL and subsequently attenuated the expression of osteoclast marker genes, such as OC-STAMP, DC-STAMP, β3-integrin, MMP9, ATP6v0d2, and CtsK. These results suggest that βBA is a potential therapeutic candidate for the treatment of excessive osteoclast-induced bone diseases such as osteoporosis.  相似文献   

7.
Glioblastoma multiforme (GBM) is a fast-growing and aggressive type of brain cancer. Unlike normal brain cells, GBM cells exhibit epithelial–mesenchymal transition (EMT), which is a crucial biological process in embryonic development and cell metastasis, and are highly invasive. Copper reportedly plays a critical role in the progression of a variety of cancers, including brain, breast, and lung cancers. However, excessive copper is toxic to cells. D-penicillamine (DPA) and triethylenetetramine (TETA) are well-known copper chelators and are the mainstay of treatment for copper-associated diseases. Following treatment with copper sulfate and DPA, GBM cells showed inhibition of proliferation and suppression of EMT properties, including reduced expression levels of N-cadherin, E-cadherin, and Zeb, which are cell markers associated with EMT. In contrast, treatment with copper sulfate and TETA yielded the opposite effects in GBM. Genes, including TGF-β, are associated with an increase in copper levels, implying their role in EMT. To analyze the invasion and spread of GBM, we used zebrafish embryos xenografted with the GBM cell line U87. The invasion of GBM cells into zebrafish embryos was markedly inhibited by copper treatment with DPA. Our findings suggest that treatment with copper and DPA inhibits proliferation and EMT through a mechanism involving TGF-β/Smad signaling in GBM. Therefore, DPA, but not TETA, could be used as adjuvant therapy for GBM with high copper concentrations.  相似文献   

8.
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders that include Crohn’s disease (CD) and ulcerative colitis (UC). The incidence of IBD is rising globally. However, the etiology of IBD is complex and governed by multiple factors. The current clinical treatment for IBD mainly includes steroids, biological agents and need-based surgery, based on the severity of the disease. Current drug therapy is often associated with adverse effects, which limits its use. Therefore, it necessitates the search for new drug candidates. In this pursuit, phytochemicals take the lead in the search for drug candidates to benefit from IBD treatment. β-myrcene is a natural phytochemical compound present in various plant species which possesses potent anti-inflammatory activity. Here we investigated the role of β-myrcene on colon inflammation to explore its molecular targets. We used 2% DSS colitis and TNF-α challenged HT-29 adenocarcinoma cells as in vivo and in vitro models. Our result indicated that the administration of β-myrcene in dextran sodium sulfate (DSS)-treated mice restored colon length, decreased disease activity index (DAI), myeloperoxidase (MPO) enzyme activity and suppressed proinflammatory mediators. β-myrcene administration suppressed mitogen-activated protein kinases (MAPKs) and nuclear factor-κB (NF-κB) pathways to limit inflammation. β-myrcene also suppressed mRNA expression of proinflammatory chemokines in tumor necrosis factor-α (TNF-α) challenged HT-29 adenocarcinoma cells. In conclusion, β-myrcene administration suppresses colon inflammation by inhibiting MAP kinases and NF-κB pathways.  相似文献   

9.
β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics. Here, we report a novel one-step approach for the synthesis of α-(trifluoromethyl)-β-lactams and related products from fluorinated olefins, anilines and CO. Utilization of an advanced palladium catalyst system with the Ruphos ligand allows for selective cycloaminocarbonylations to give diverse fluorinated β-lactams in high yields.

β-Lactam compounds play a key role in medicinal chemistry, specifically as the most important class of antibiotics.  相似文献   

10.
Osteoarthritis is characterized by structural alteration of joints. Fibrosis of the synovial tissue is often detected and considered one of the main causes of joint stiffness and pain. In our earlier proteomic study, increased levels of vitronectin (VTN) fragment (amino acids 381–397) were observed in the serum of osteoarthritis patients. In this work, the affinity of this fragment for integrins and its putative role in TGF-β1 activation were investigated. A competition study determined the interaction of VTN(381–397 a.a.) with αVβ6 integrin. Subsequently, the presence of αVβ6 integrin was substantiated on primary human fibroblast-like synoviocytes (FLSs) by western blot and flow cytometry. By immunohistochemistry, β6 was detected in synovial membranes, and its expression showed a correlation with tissue fibrosis. Moreover, β6 expression was increased under TGF-β1 stimulation; hence, a TGF-β bioassay was applied. We observed that αVβ6 could mediate TGF-β1 bioavailability and that VTN(381–397 a.a.) could prevent TGF-β1 activation by interacting with αVβ6 in human FLSs and increased α-SMA. Finally, we analyzed serum samples from healthy controls and patients with osteoarthritis and other rheumatic diseases by nano-LC/Chip MS–MS, confirming the increased expression of VTN(381–397 a.a.) in osteoarthritis as well as in lupus erythematosus and systemic sclerosis. These findings corroborate our previous observations concerning the overexpression of VTN(381–397 a.a.) in osteoarthritis but also in other rheumatic diseases. This fragment interacts with αVβ6 integrin, a receptor whose expression is increased in FLSs from the osteoarthritic synovial membrane and that can mediate the activation of the TGF-β1 precursor in human FLSs.Subject terms: Osteoarthritis, Cell culture  相似文献   

11.
Splenectomy has been reported to improve liver fibrosis in patients with cirrhosis and hypersplenism. However, the mechanisms remain unclear. Tumor necrosis factor superfamily 14 (TNFSF14; also known as LIGHT) is highly expressed in the context of fibrosis and promotes disease progression in patients with fibrotic diseases such as pulmonary and skin fibrosis. Here, we determined whether splenectomy controls the production of LIGHT to improve liver fibrosis. Splenectomy reduced serum LIGHT levels in cirrhotic patients with hypersplenism and a ConA-induced liver fibrosis mouse model. Blocking LIGHT resulted in the downregulation of TGF-β1 in RAW264.7 cells. LIGHT treatment of RAW264.7 and JS1 cells in coculture regulated transforming growth factor-β1 (TGF-β1) expression through the activation of JNK signaling. Small interfering RNA-mediated silencing of lymphotoxin β receptor (LTβR) in macrophages resulted in pronounced decreases in the levels of fibrosis and αSMA in JS1 cells. These results indicated that LIGHT bound to LTβR and drove liver fibrosis in vitro. Blocking TGF-β1 abolished the effect of LIGHT in vitro. Furthermore, the administration of recombinant murine LIGHT protein-induced liver fibrosis with splenectomy, while blocking LIGHT without splenectomy improved liver fibrosis in vivo, revealing that the decrease in fibrosis following splenectomy was directly related to reduced levels of LIGHT. Thus, high levels of LIGHT derived from the spleen and hepatic macrophages activate JNK signaling and lead to increased TGF-β1 production in hepatic macrophages. Splenectomy attenuates liver fibrosis by decreasing the expression of LIGHT.Subject terms: Tumour-necrosis factors, Liver fibrosis, Hepatic stellate cells, Liver cirrhosis, Experimental models of disease  相似文献   

12.
Pulmonary fibrosis is a progressive and lethal lung disease characterized by the proliferation and differentiation of lung fibroblasts and the accumulation of extracellular matrices. Since pulmonary fibrosis was reported to be associated with adenosine monophosphate-activated protein kinase (AMPK) activation, which is negatively regulated by cereblon (CRBN), we aimed to determine whether CRBN is involved in the development of pulmonary fibrosis. Therefore, we evaluated the role of CRBN in bleomycin (BLM)-induced pulmonary fibrosis in mice and in transforming growth factor-beta 1 (TGF-β1)-induced differentiation of human lung fibroblasts. BLM-induced fibrosis and the mRNA expression of collagen and fibronectin were increased in the lung tissues of wild-type (WT) mice; however, they were significantly suppressed in Crbn knockout (KO) mice. While the concentrations of TGF-β1/2 in bronchoalveolar lavage fluid were increased via BLM treatment, they were similar between BLM-treated WT and Crbn KO mice. Knockdown of CRBN suppressed TGF-β1-induced activation of small mothers against decapentaplegic 3 (SMAD3), and overexpression of CRBN increased it. TGF-β1-induced activation of SMAD3 increased α-smooth muscle actin (α-SMA) and collagen levels. CRBN was found to be colocalized with AMPKα1 in lung fibroblasts. CRBN overexpression inactivated AMPKα1. When cells were treated with metformin (an AMPK activator), the CRBN-induced activation of SMAD3 and upregulation of α-SMA and collagen expression were significantly suppressed, suggesting that increased TGF-β1-induced activation of SMAD3 via CRBN overexpression is associated with AMPKα1 inactivation. Taken together, these data suggest that CRBN is a profibrotic regulator and maybe a potential target for treating lung fibrosis.Subject terms: Pathogenesis, Biochemistry  相似文献   

13.
14.
Pulmonary fibrosis is a severe and irreversible interstitial pulmonary disease with high mortality and few treatments. Magnesium lithospermate B (MLB) is a hydrosoluble component of Salvia miltiorrhiza and has been reported to have antifibrotic effects in other forms of tissue fibrosis. In this research, we studied the effects of MLB on pulmonary fibrosis and the underlying mechanisms. Our results indicated that MLB treatment (50 mg/kg) for seven days could attenuate bleomycin (BLM)-induced pulmonary fibrosis by reducing the alveolar structure disruption and collagen deposition in the C57 mouse model. MLB was also found to inhibit transforming growth factor-beta (TGF-β)-stimulated myofibroblastic transdifferentiation of human lung fibroblast cell line (MRC-5) cells and collagen production by human type II alveolar epithelial cell line (A549) cells, mainly by decreasing the expression of TGF-β receptor I (TGF-βRI) and regulating the TGF-β/Smad pathway. Further studies confirmed that the molecular mechanisms of MLB in BLM-induced pulmonary fibrosis mice were similar to those observed in vitro. In summary, our results demonstrated that MLB could alleviate experimental pulmonary fibrosis both in vivo and in vitro, suggesting that MLB has great potential for pulmonary fibrosis treatment.  相似文献   

15.
β-sitosterol (SIT), the most abundant bioactive component of vegetable oil and other plants, is a highly potent antidiabetic drug. Our previous studies show that SIT controls hyperglycemia and insulin resistance by activating insulin receptor and glucose transporter 4 (GLUT-4) in the adipocytes of obesity induced type 2 diabetic rats. The current research was undertaken to investigate if SIT could also exert its antidiabetic effects by circumventing adipocyte induced inflammation, a key driving factor for insulin resistance in obese individuals. Effective dose of SIT (20 mg/kg b.wt) was administered orally for 30 days to high fat diet and sucrose induced type-2 diabetic rats. Metformin, the conventionally used antidiabetic drug was used as a positive control. Interestingly, SIT treatment restores the elevated serum levels of proinflammatory cytokines including leptin, resistin, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to normalcy and increases anti-inflammatory adipocytokines including adiponectin in type 2 diabetic rats. Furthermore, SIT decreases sterol regulatory element binding protein-1c (SREBP-1c) and enhances Peroxisome Proliferator–activated receptor-γ (PPAR-γ) gene expression in adipocytes of diabetic rats. The gene and protein expression of c-Jun-N-terminal kinase-1 (JNK1), inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) and nuclear factor kappa B (NF-κB) were also significantly attenuated in SIT treated groups. More importantly, SIT acts very effectively as metformin to circumvent inflammation and insulin resistance in diabetic rats. Our results clearly show that SIT inhibits obesity induced insulin resistance by ameliorating the inflammatory events in the adipose tissue through the downregulation of IKKβ/NF-κB and c-Jun-N-terminal kinase (JNK) signaling pathway.  相似文献   

16.
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients.Subject terms: Gastric cancer, Experimental models of disease  相似文献   

17.
Intervertebral disc degeneration (IVDD) is a main cause of low back pain, and inflammatory factors play key roles in its pathogenesis. Gremlin-1 (Grem1) was reported to induce an inflammatory response in other fields. This study aimed to investigate the mechanisms of Grem1 in the degenerative process of intervertebral discs. Dysregulated genes were determined by analyzing microarray profiles. The expression of Grem1 in 17 human disc samples (male:female = 9:8) and rat models (n = 5 each group) was measured by western blotting (WB), real-time quantitative PCR (RT-qPCR), and immunohistochemistry (IHC). The regulatory effects of Grem1 on apoptosis were examined using siRNAs, flow cytometry, immunofluorescence (IF), and WB. The therapeutic effect was evaluated by locally injecting specific Grem1 siRNA into IVDD rats. The expression of Grem1 was significantly increased in human degenerative intervertebral discs; furthermore, the expression of Grem1 positively correlated with the level of intervertebral disc degeneration. Grem1 was significantly overexpressed in tumor necrosis factor (TNF)-α-induced degenerative NP cells. Apoptosis in degenerative NP cells transfected with siRNA targeting Grem1 was significantly lower than that in the control group. Specific Grem1 siRNA markedly repressed the development of IVDD in surgery-induced IVDD rats. These results indicated that the expression of Grem1 was positively correlated with the severity of intervertebral disc degeneration, and Grem1 siRNA could inhibit Grem1-induced apoptosis and extracellular matrix alterations by mediating the TGF-β/Smad signaling pathway. This study may provide a therapeutic strategy for alleviating inflammation-induced apoptosis associated with intervertebral disc degeneration.Subject terms: Experimental models of disease, Biological therapy  相似文献   

18.
(Ph3C)[BPh(F)4]-catalyzed Hosomi-Sakurai allylation of allylsilanes with β,γ-unsaturated α-ketoesters has been developed to give γ,γ-disubstituted α-ketoesters in high yields with excellent chemoselectivity. Preliminary mechanistic studies suggest that trityl cation dominates the catalysis, while the silyl cation plays a minor role.  相似文献   

19.
Articular cartilage (AC) damage is quite common, but due to AC’s poor self-healing ability, the damage can easily develop into osteoarthritis (OA). To solve this problem, we developed a microsphere/hydrogel system that provides two growth factors that promote cartilage repair: transforming growth factor-β3 (TGF-β3) to enhance cartilage tissue formation and ghrelin synergy TGF-β to significantly enhance the chondrogenic differentiation. The hydrogel and microspheres were characterized in vitro, and the biocompatibility of the system was verified. Double emulsion solvent extraction technology (w/o/w) is used to encapsulate TGF-β3 and ghrelin into microspheres, and these microspheres are encapsulated in a hydrogel to continuously release TGF-β3 and ghrelin. According to the chondrogenic differentiation ability of mesenchymal stem cells (MSCs) in vitro, the concentrations of the two growth factors were optimized to promote cartilage regeneration.  相似文献   

20.
In this study, we developed an efficient Ir-catalyzed cascade umpolung allylation/2-aza-Cope rearrangement of tertiary α-trifluoromethyl α-amino acid derivatives for the preparation of a variety of quaternary α-trifluoromethyl α-amino acids in high yields with excellent enantioselectivities. The umpolung reactivity empowered by the activation of the key isatin-ketoimine moiety obviates the intractable enantioselectivity control in Pd-catalyzed asymmetric linear α-allylation. In combination with quasi parallel kinetic resolution or kinetic resolution, the generality of this method is further demonstrated by the first preparation of enantioenriched quaternary trifluoromethyl β-, γ-, δ- and ε-amino acid derivatives.

In this study, we developed an efficient Ir-catalyzed cascade umpolung allylation/2-aza-Cope rearrangement for the preparation of a variety of quaternary trifluoromethyl α-ε-amino acids in high yields with excellent enantioselectivities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号