首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many researchers have reported that oxidative damage to mitochondrial DNA (mtDNA) is increased in several age-related disorders. Damage to mitochondrial constituents and mtDNA can generate additional mitochondrial dysfunction that may result in greater reactive oxygen species production, triggering a circular chain of events. However, the mechanisms underlying this vicious cycle have yet to be fully investigated. In this review, we summarize the relationship of oxidative stress-induced mitochondrial dysfunction with mtDNA mutation in neurodegenerative disorders.  相似文献   

2.
TAR DNA-binding protein 43 (TDP-43) is a highly conserved nuclear RNA/DNA-binding protein involved in the regulation of RNA processing. The accumulation of TDP-43 aggregates in the central nervous system is a common feature of many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer’s disease (AD), and limbic predominant age-related TDP-43 encephalopathy (LATE). Accumulating evidence suggests that prion-like spreading of aberrant protein aggregates composed of tau, amyloid-β, and α-synuclein is involved in the progression of neurodegenerative diseases such as AD and PD. Similar to those of prion-like proteins, pathological aggregates of TDP-43 can be transferred from cell-to-cell in a seed-dependent and self-templating manner. Here, we review clinical and experimental studies supporting the prion-like spreading of misfolded TDP-43 and discuss the molecular mechanisms underlying the propagation of these pathological aggregated proteins. The idea that misfolded TDP-43 spreads in a prion-like manner between cells may guide novel therapeutic strategies for TDP-43-associated neurodegenerative diseases.Subject terms: Neurodegenerative diseases, Neurodegeneration  相似文献   

3.
Nano-drug carriers such as liposomes, polymer micelles, and polymer nanoparticles are used for neurodegenerative diseases, which can help drug pass the blood-brain barrier easily, and improve the therapeutic effect.  相似文献   

4.
Protein aggregation is commonly associated with a large number of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and other types of pathological conditions. Misfolding and aggregation of a number of peptides and proteins have been found to occur under these conditions. In the present review, some mechanistic features of the events related to the type of structure–function relationships which may define the outcome of the abnormal conditions are discussed. The immunological responses to the aggregates and possible therapeutic strategies for prevention or control of the diseases are also reviewed. Protein aggregation and its effect on human body have become an important issue over the last two decades. Many diseases in human are related to aggregation and misfolding of different kinds of proteins; therefore, diagnosis of causes of the aggregation and their mechanisms which provoke it are important. This review describes the relations between structures and functions of already aggregated proteins, as well as proteins, which only enter initial stages of aggregation. The consequences of aggregations, which provoke many kinds of neurodegenerative disorders, are explained in details and some factors that may influence their severity are described. In addition, the immunologic responses to these aggregates are discussed. Suggestions of plausible therapies of preventing or slowing down the protein condensation diseases are presented.  相似文献   

5.
The NLRC4 inflammasome, a member of the nucleotide-binding and oligomerization domain-like receptor (NLR) family, amplifies inflammation by facilitating the processing of caspase-1, interleukin (IL)–1β, and IL-18. We explored whether NLRC4 knockdown alleviated inflammatory injury following intracerebral hemorrhage (ICH). Furthermore, we investigated whether NLRC4 inflammasome activation can be adjusted by the regulator of G protein signaling 2/leucine-rich repeat kinase-2 pathway. Fifty microliters of arterial blood was drawn and injected into the basal ganglion to simulate the ICH model. NLRC4 small interfering RNAs (siRNAs) were utilized to knockdown NLRC4. An LRRK2 inhibitor (GNE7915) was injected into the abdominal cavity. Short hairpin (sh) RNA lentiviruses and lentiviruses containing RGS2 were designed and applied to knockdown and promote RGS2 expression. Neurological functions, brain edema, Western blot, enzyme-linked immunosorbent, hematoxylin and eosin staining, Nissl staining, immunoprecipitation, immunofluorescence assay and Evans blue dye extravasation and autofluorescence assay were evaluated. It was shown that the NLRC4 inflammasome was activated following ICH injury. NLRC4 knockdown extenuated neuronal death, damage to the blood-brain barrier, brain edema and neurological deficiency 3 days after ICH. NLRC4 knockdown reduced myeloperoxidase (MPO) cells as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-18 following ICH. GNE7915 reduced pNLRC4 and NLRC4 inflammasome activation. RGS2 suppressed the interaction of LRRK2 and NLRC4 and NLRC4 inflammasome activation by regulating pLRRK2. Our study demonstrated that the NLRC4 inflammasome may aggravate the inflammatory injury induced by ICH and that RGS2/LRRK2 may relieve inflammatory injury by restraining NLRC4 inflammasome activation.Subject terms: Molecular neuroscience, Acute inflammation  相似文献   

6.
蛋白质组学是在整体水平上研究细胞、组织或生物体蛋白质组成及变化规律的科学.与传统的生物学研究相比,蛋白质组学具有快速、灵敏、高通量的优点.神经退行性疾病是一类由神经系统内特定神经细胞的进程性病变或丢失而导致神经功能障碍的疾病,严重危害人类健康.近年来,基于质谱的蛋白质组学技术在神经退行性疾病的研究中得到了广泛应用.本文简要介绍了蛋白质组学在样品分离、多肽定量、质谱检测及生物标志物临床验证等方面的技术发展,并结合实例综述了基于质谱的蛋白质组学在神经退行性疾病生物标志物发现与验证中的研究进展.  相似文献   

7.
Mammalian cells remove misfolded proteins using various proteolytic systems, including the ubiquitin (Ub)-proteasome system (UPS), chaperone mediated autophagy (CMA) and macroautophagy. The majority of misfolded proteins are degraded by the UPS, in which Ub-conjugated substrates are deubiquitinated, unfolded and cleaved into small peptides when passing through the narrow chamber of the proteasome. The substrates that expose a specific degradation signal, the KFERQ sequence motif, can be delivered to and degraded in lysosomes via the CMA. Aggregation-prone substrates resistant to both the UPS and the CMA can be degraded by macroautophagy, in which cargoes are segregated into autophagosomes before degradation by lysosomal hydrolases. Although most misfolded and aggregated proteins in the human proteome can be degraded by cellular protein quality control, some native and mutant proteins prone to aggregation into β-sheet-enriched oligomers are resistant to all known proteolytic pathways and can thus grow into inclusion bodies or extracellular plaques. The accumulation of protease-resistant misfolded and aggregated proteins is a common mechanism underlying protein misfolding disorders, including neurodegenerative diseases such as Huntington''s disease (HD), Alzheimer''s disease (AD), Parkinson''s disease (PD), prion diseases and Amyotrophic Lateral Sclerosis (ALS). In this review, we provide an overview of the proteolytic pathways in neurons, with an emphasis on the UPS, CMA and macroautophagy, and discuss the role of protein quality control in the degradation of pathogenic proteins in neurodegenerative diseases. Additionally, we examine existing putative therapeutic strategies to efficiently remove cytotoxic proteins from degenerating neurons.  相似文献   

8.
Herein we describe our recent attempts to target the P2X7 receptor for potential treatment of neurological disorders. This work focusses on different polycycles including carborane, adamantane or cubane, joined by either a cyanoguanidine or an amide linker to phenyl or isoquinoline moieties. We have demonstrated the superiority of the adamantyl moiety over other polycycles in terms of synthetic accessibility and biological (cellular) activity. We have also shown that an amide or cyanoguanidine linker can greatly alter the biological activity of compounds. This SAR study provides important insights into the types of functionality required to target the P2X7 receptor.  相似文献   

9.
Studies on the mode of action of two boroncontaining anti-neoplastic agents, ethylamine-carboxyborane and triphenylphosphine-carboxyborane, are reported. The major site of inhibition was in the pyrimidine de nove synthetic pathway at orotidine monophosphate decarboxylase activity. Additional sites which may facilitate the inhibition of cell growth were IMP dehydrogenase, thymidine kinase, TMP kinase and TDP kinase, m-RNA, r-RNA and t-RNA polymerase activities as well as topoisomerase II activity. The reduction in enzyme activities led to sufficient reduction of d(NTP) levels to suppress DNA synthesis and cell growth. DNA strand scission was evident in the presence of drug. Multiple modes of action are common with amine-carboxyboranes. Acute toxicity studies in mice showed that both agents were safe in their therapeutic range based on organ weights, histological tissue sections, clinical chemistry values and hematopoietic parameters.  相似文献   

10.
Pejcic B  De Marco R  Parkinson G 《The Analyst》2006,131(10):1079-1090
Global biosecurity threats such as the spread of emerging infectious diseases (i.e., avian influenza, SARS, Hendra, Nipah, etc.) and bioterrorism have generated significant interest in recent years. There is considerable effort directed towards understanding and negating the proliferation of infectious diseases. Biosensors are an attractive tool which have the potential to detect the outbreak of a virus and/or disease. Although there is a host of technologies available, either commercially or in the scientific literature, the development of biosensors for the detection of emerging infectious diseases (EIDs) is still in its infancy. There is no doubt that the glucose biosensor, the gene chip, the protein chip, etc. have all played and are still playing a significant role in monitoring various biomolecules. Can biosensors play an important role for the detection of emerging infectious diseases? What does the future hold and which biosensor technology platform is suitable for the real-time detection of infectious diseases? These and many other questions will be addressed in this review. The purpose of this review is to present an overview of biosensors particularly in relation to EIDs. It provides a synopsis of the various types of biosensor technologies that have been used to detect EIDs, and describes some of the technologies behind them in terms of transduction and bioreceptor principles.  相似文献   

11.
Summary Thin-layer chromatography (TLC) is a rapid, reliable and inexpensive screening technique for diagnosis of inherited metabolic diseases (IMD). Our screening program encompasses five main situations where the use of TLC is considered to be vindicated: (i) analysis of amino acids; (ii) screening for sugar defects; (iii) detection of pathological oligosaccharidurias; (iv) screening for organic acid disorders; and (v) detection of abnormalities in tryptophan metabolism. Examples are presented of chromatograms obtained from pathological samples. Presented at the 21st ISC held in Stuttgart, Germany, 15th–20th September, 1996  相似文献   

12.
The present paper focuses on the analysis of trace metallic elements and their role in neurodegenerative disorders. The use of synchrotron radiation microbeams allows investigation of pathological tissues from Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis cases in a nondestructive manner and at cellular level. By employing X-ray absorption near edge structure (XANES) technique, the chemical state of the investigated elements can be determined, while energy-selective X-ray fluorescence spectroscopy provides the spatial distribution of each element in each oxidative state selectively. The investigated tissues (derived from human, monkey and mouse specimens) show distinct imbalances of metallic elements such as Zn and Cu as well as Fe(2+)/Fe(3+) redox pair, which point to oxidative stress as a crucial factor in the development or progress of these neurodegenerative diseases.  相似文献   

13.
The development of new strategies to find commercial molecules with promising biochemical features is a main target in the field of biomedicine chemistry. In this work we present an in silico-based protocol that allows identifying commercial compounds with suitable metal coordinating and pharmacokinetic properties to act as metal-ion chelators in metal-promoted neurodegenerative diseases (MpND). Selection of the chelating ligands is done by combining quantum chemical calculations with the search of commercial compounds on different databases via virtual screening. Starting from different designed molecular frameworks, which mainly constitute the binding site, the virtual screening on databases facilitates the identification of different commercial molecules that enclose such scaffolds and, by imposing a set of chemical and pharmacokinetic filters, obey some drug-like requirements mandatory to deal with MpND. The quantum mechanical calculations are useful to gauge the chelating properties of the selected candidate molecules by determining the structure of metal complexes and evaluating their stability constants. With the proposed strategy, commercial compounds containing N and S donor atoms in the binding sites and capable to cross the BBB have been identified and their chelating properties analyzed.  相似文献   

14.
《印度化学会志》2021,98(1):100011
Nowadays, one of the major challenges in biomedical and biopharmaceutical field is designing novel and effective anti-amyloidogenic inhibitors for the treatment of various human pathophysiologies associated with protein aggregation. In this milieu, numerous small molecules, polyphenols, surfactants, nanoparticles, etc. have been extensively studied to explore their anti-amyloidogenic properties, and thus provide huge scope for them to appear as future therapeutic agents in the treatment of amyloidogenic disorders. Recently, inspired by the fascinating properties of polymers such as non-toxicity, excellent biocompatibility, tuneable architectures, controllable degradation rate, possibility of multiple interaction between amyloidogenic protein/peptide and polymer, and excellent in vivo stability, polymer-based therapeutic agents have been extensively explored in the field of protein misfolding and aggregation. This mini-review article emphasizes the recent advancements of polymeric materials in the field of protein aggregation for ameliorating neurodegenerative diseases. Finally, we conclude this mini-review by providing some viewpoints on future directions.  相似文献   

15.
16.
The polymorphic transformation CsCl type → NaCl type in ammonium chloride, bromide, and iodide is shown to be topotaxial and orientation relations derived by X-ray diffraction are reported for NH4Cl and NH4Br. These orientation relations are similar to those maintained in the reverse transformation NaCl type → CsCl type. At least the commonest relation can result from cooperative displacements. Transformed crystals of NH4I and NH4Br store stresses and imperfections sufficient to modify significantly the ideal thermodynamics of transformation.  相似文献   

17.
A series of diiron(II) complexes of the dinucleating ligand HPTP (N,N,N',N'-tetrakis(2-pyridylmethyl)-2-hydroxy-1,3-diaminopropane) with one or two supporting carboxylate bridges has been synthesized and characterized. The crystal structure of one member of each subset has been obtained to reveal for subset A a (micro-alkoxo)(micro-carboxylato)diiron(II) center with one five- and one six-coordinate metal ion and for subset B a coordinatively saturated (micro-alkoxo)bis(micro-carboxylato)diiron(II) center. These complexes react with O(2) in second-order processes to form adducts characterized as (micro-1,2-peroxo)diiron(III) complexes. Stopped-flow kinetic studies show that the oxygenation step is sensitive to the availability of an O(2) binding site on the diiron(II) center, as subset B reacts more slowly by an order of magnitude. The lifetimes of the O(2) adducts are also distinct and can be modulated by the addition of oxygen donor ligands. The O(2) adduct of a monocarboxylate complex decays by a fast second-order process that must be monitored by stopped-flow methods, but becomes stabilized in CH(2)Cl(2)/DMSO (9:1 v/v) and decomposes by a much slower first-order process. The O(2) adduct of a dicarboxylate complex is even more stable in pure CH(2)Cl(2) and decays by a first-order process. These differences in adduct stability are reflected in the observation that only the O(2) adducts of monocarboxylate complexes can oxidize substrates, and only those substrates that can bind to the diiron center. Thus, the much greater stability of the O(2) adducts of dicarboxylate complexes can be rationalized by the formation of a (micro-alkoxo)(micro-1,2-peroxo)diiron(III) complex wherein the carboxylate bridges in the diiron(II) complex become terminal ligands in the O(2) adduct, occupy the remaining coordination sites on the diiron center, and prevent binding of potential substrates. Implications for the oxidation mechanisms of nonheme diiron enzymes are discussed.  相似文献   

18.
Redox adaptation is an important concept that explains the mechanisms by which cancer cells survive under persistent endogenous oxidative stress and become resistant to certain anticancer agents. To investigate this concept, we determined the expression levels of peroxiredoxins (Prxs), antioxidant enzymes in drug-resistant non-small cell lung carcinoma cells. Prx II was remarkably increased only in A549/GR (gefitinib-resistant) cells compared with A549 cells, consistent with methylation/demethylation. Prx II was highly methylated in the A549 cells but was demethylated in the A549/GR cells. The elevated expression of Prx II resulted in the downregulation of reactive oxygen species (ROS) and cell death and upregulation of cell cycle progression in the A549/GR cells. When Prx II mRNA in the A549/GR cells was knocked down, the levels of ROS and apoptosis were significantly recovered to the levels of the controls. In addition, signaling molecules involved in apoptosis were increased in the A549/GR-shPrx II cells. There was no difference in the expression of MAPK/ERK between the A549/GR cells and A549/GR-shPrx II cells, but the phosphorylation of JNK was increased in the A549/GR cells and was markedly decreased in the A549/GR-shPrx II cells. Colony number and tumor growth were significantly decreased in the A549/GR-shPrx II cells compared with the A549/GR cells. Our findings suggest that Prx II has an important role in cancer cell survival via the modulation of signaling molecules involved in apoptosis and the phosphorylation of JNK by the downregulation of ROS levels in A549/GR cells.  相似文献   

19.
CD99 is a 32-kDa cell surface molecule present on thymocytes, peripheral T cells, many other hematopoietic stem cells and somatic cells were implicated in cell-cell adhesion and cell-activation phenomena. Two major subtypes have been identified so far, designated CD99 type I and type II. We have investigated the correlation between the degree of neural differentiation and the expression of CD99 subtypes in three differentially differentiated cell lines such as CADO-ES1, RD-ES, and SH-N-SY5Y, in order of differentiation. In addition, we induced differentiation of the RD-ES cell line by N6,2'-dibutyryl-cAMP (db-cAMP). Six days after treatment with db-cAMP, RD-ES cell line has changed its morphology from uniform round cells to cells with neurites, and initially CD99 type II-overexpressed RD-ES cells showed significant down-regulation of CD99 type II, whereas CD99 type I expression remained constant. When RD- ES cells were transfected with the cDNA encoding for CD99 type I-green fluorescence protein (GFP) and type II-GFP, CD99 type II transfected RD-ES cell line remained unchanged with morphology of undifferentiated form. Our data suggest that CD99 type II acts as a negative regulator in the neural differentiation of precursor cells that might occur during nerve system development.  相似文献   

20.
Scanning probe techniques enable direct imaging of morphology changes associated with cellular processes at life specimen. Here, glutaraldehyde-fixed and living alveolar type II (ATII) cells were investigated by atomic force microscopy (AFM), and the obtained topographical data were correlated with results obtained by scanning electron microscopy (SEM) and confocal microscopy (CM). We show that low-force contact mode AFM at glutaraldehyde-fixed cells provides complementary results to SEM and CM. Both AFM and SEM images reveal fine structures at the surface of fixed cells, which indicate microvilli protrusions. If ATII cells were treated with Ca2+ channel modulators known to induce massive endocytosis, changes of the cell surface topography became evident by the depletion of microvilli. Low force contact mode AFM imaging at fixed ATII cells revealed a significant reduction of the surface roughness for capsazepine and 2-aminoethoxydiphenyl-borate (CPZ/2-APB)-treated cells compared to untreated control cells (Rc of 99.7 ± 6.8 nm vs. Rc of 71.9 ± 4.6 nm for N = 22), which was confirmed via SEM studies. CM of microvilli marker protein Ezrin revealed a cytoplasmic localization of Ezrin in CPZ/2-APB-treated cells, whereas a submembranous Ezrin localization was observed in control cells. Furthermore, in situ AFM investigations at living ATII cells using low force contact mode imaging revealed an apparent decrease in cell height of 17% during stimulation experiments. We conclude that a dynamic reorganization of the microvillous cell surface occurs in ATII cells at conditions of stimulated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号