共查询到20条相似文献,搜索用时 31 毫秒
1.
研究玻色-爱因斯坦凝聚的相变特征,证明了粒子间存在弱排斥相互作用的玻色系统的玻色-爱因斯坦凝聚是二级相变。 相似文献
2.
Using the linear sigma model, we have
introduced the pion isospin chemical potential. The chiral phase
transition is studied at finite temperatures and finite isospin
densities. We have studied the μ-T phase diagram for the chiral
phase transition and found the transition cannot happen below
a certain low temperature because of the Bose-Einstein condensation
in this system. Above that temperature, the chiral phase
transition is studied by the isotherms of pressure versus density.
We indicate that the transition, in the chiral limit, is a first-order
transition from a low-density phase to a high-density phase
like a gas-liquid phase transition. 相似文献
3.
4.
We calculate the quantum phase transition for a homogeneous Bose gas in the plane of s‐wave scattering length as and temperature T. This is done by improving a one‐loop result near the interaction‐free Bose‐Einstein critical temperature Tc(0) with the help of recent high‐loop results on the shift of the critical temperature due to a weak atomic repulsion based on variational perturbation theory. The quantum phase diagram shows a nose above Tc(0), so that we predict the existence of a reentrant transition above Tc(0), where an increasing repulsion leads to the formation of a condensate. 相似文献
5.
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation. 相似文献
6.
7.
We investigate the Bose-Einstein condensation of photons and photon pairs in a two-dimension optical microcavity. We find that in the paraxial approximation, the mixed gas of photons and photon pairs is formally equivalent to a two dimension system of massive bosons with non-vanishing chemical potential, which implies the existence of two possible condensate phase. We also discuss the quantum phase transition of the system and obtain the critical point analytically. Moreover, we find that the quantum phase transition of the system can be interpreted as second harmonic generation. 相似文献
8.
András Sütő 《Journal of statistical physics》2003,112(1-2):375-396
We study condensation of trapped bosons in the limit when the number of particles tends to infinity. For the noninteracting gas we prove that there is no phase transition in any dimension, but in any dimension, at any temperature the system is 100% condensated into the one-particle ground state. In the case of an interacting gas we show that for a family of suitably scaled pair interactions, the Gross–Pitaevskii scaling included, a less-than-100% condensation into a single-particle eigenstate, which may depend on the interaction strength, persists at all temperatures. 相似文献
9.
YU Zhao-Xian JIAO Zhi-Yong WANG Ji-Suo 《理论物理通讯》2008,49(1):123-125
We study quantum tunneling of a dipolar Bose-Einstein condensate in optical lattice when the spin system initially is prepared in a squeezed coherent state. It is found that there exists quantum tunneling between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappears between lattices l and l + 1, and that l and l - 1. Correspondingly, the magnetic soliton appears. 相似文献
10.
We study Bose–Einstein Condensation (BEC) in the Infinite-Range-Hopping Bose–Hubbard model with repulsive on-site particle interaction in the presence of an ergodic random single-site external potential with different distributions. We show that the model is exactly soluble even if the on-site interaction is random. We observe new phenomena: instead of enhancement of BEC for perfect bosons, for constant on-site repulsion and discrete distributions of the single-site potential there is suppression of BEC at certain fractional densities. We show that this suppression appears with increasing disorder. On the other hand, the suppression of BEC at integer densities observed in Bru and Dorlas (J. Stat. Phys.
113:177–195, 2003) in the absence of a random potential, can disappear as the disorder increases. For a continuous distribution we prove that the BEC critical temperature decreases for small on-site repulsion while the BEC is suppressed at integer values of the density for large repulsion. Again, the threshold for this repulsion gets higher, when disorder increases. 相似文献
11.
We review our recent theoretical advances in the dynamics of Bose-Einstein condensates with tunable interactions using Feshbach resonance and external potential. A set of analytic and numerical methods for Gross-Pitaevskii equations are developed to study the nonlinear dynamics of Bose-Einstein condensates. Analytically, we present the integrable conditions for the Gross-Pitaevskii equations with tunable interactions and external potential, and obtain a family of exact analytical solutions for one- and two-component Bose-Einstein condensates in one and two-dimensional cases. Then we apply these models to investigate the dynamics of solitons and collisions between two solitons. Numerically, the stability of the analytic exact solutions are checked and the phenomena, such as the dynamics and modulation of the ring dark soliton and vector-soliton, soliton conversion via Feshbach resonance, quantized soliton and vortex in quasi-two-dimensional are also investigated. Both the exact and numerical solutions show that the dynamics of Bose-Einstein condensates can be effectively controlled by the Feshbach resonance and external potential, which offer a good opportunity for manipulation of atomic matter waves and nonlinear excitations in Bose-Einstein condensates. 相似文献
12.
YANG Xiao-Xian SHI Yu-Ren DUAN Wen-Shan 《理论物理通讯》2008,49(1):119-122
We discuss the possible nonlinear waves of atomic matter waves in a cigar-shaped Bose-Einstein condensatewith dissipation. The waves can be described by a KdV-type equation. The KdV-type equation has a solitary wave solution. The amplitude, speed, and width of the wave vary exponentially with time t. The dissipative term of ~/ plays an important role for the wave amplitude, speed, and width. Comparisons have been given between the analytical solutions and the numerical results. It is shown that both are in good agreement. 相似文献
13.
We investigate the Landau-Zener tunnelling of two-component Bose-Einstein condensates (BECs) in optical lattices. In the neighborhood of the Brillouin zone edge, the system can be reduced to two coupled nonlinear two-level models. From the models, we calculate the change of the tunnelling probability for each component with the linear sweeping rate. It is found that the probability for each component exhibits regular oscillating behavior for the larger sweeping rate, but for smaller rate the oscillation is irregular. Moreover, the asymmetry of the tunnelling between the two components can be induced by the unbalanced initial populations or the inequality of the two self-interactions when the cross-interaction between the components exists. The result can not be found in the single component BECs. 相似文献
14.
In this paper, by applying the extended 3acobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained. 相似文献
15.
We investigate two solvable models for Bose-Einstein condensates and extract physical information by studying the structure of the solutions of their Bethe ansatz equations. A careful observation of these solutions for the ground state of both models, as we vary some parameters of the Hamiltonian, suggests a connection between the behavior of the roots of the Bethe ansatz equations and the physical behavior of the models. Then, by the use of standard techniques for approaching quantum phase transition - gap, entanglement and fidelity - we find that the change in the scenery in the roots of the Bethe ansatz equations is directly related to a quantum phase transition, thus providing an alternative method for its detection. 相似文献
16.
In this paper, by applying the extended Jacobi elliptic function expansion method, the envelope periodic solutions and corresponding dark soliton solution, bright soliton solution to Bose-Einstein condensation in linear magnetic field and time-dependent laser field are obtained. 相似文献
17.
18.
We have studied the ground state configurations of a rotating Bose-Einstein condensation in a toroidal trap as the radius of the central Gaussian potential expands adiabatically. Firstly, we observe that the vortices are devoured successively into the central hole of the condensate to form a giant vortex as the radius of the trap expands. When all the pre-existing vortices are absorbed, the angular momentum of the system still increase as the radius of the
gaussian potential enlarges. When increasing the interaction strength, we find that more singly quantized vortices are squeezed into the condensate, but the giant vortex does not change. 相似文献
19.
Tunneling of Bose-Einstein condensate and interference effect in a harmonic trap with a Gaussian energy barrier 下载免费PDF全文
The tunneling effect of Bose-Einstein condensate (BEC) in a harmonic trap with a Gaussian energy barrier is studied in this paper. The initial condensate evolves into two separate moving condensates after the tunneling time under certain conditions. The interference pattern between the two moving condensates is given as a comparison and as a further demonstration of the existence of the global phase. 相似文献
20.
For the two-level atoms system interacting with
single-mode active field in a quantum cavity, the dynamics of the
Bose-Einstein Condensation (BEC) is analyzed using an ordinary method
suggested by authors to solve the system of Schrödinger representation
in the Heisenberg representation. The wave function of the atoms is given.
The stability factor determining the BEC and the selection rules of the
quantum transition are solved. 相似文献