首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism of dehydrochlorination of 2,3-dichlorobutane and chlorinated polybutadiene which are model compounds of head-to-head poly(vinyl chloride) has been investigated by pyrolysis, thermal, and ultraviolet-induced decomposition. The activation energy of dehydrochlorination for head-to-head poly(vinyl chloride) in nitrogen was 23 kcal/mole at temperatures of 150–190°C, which is slightly smaller than that (29 kcal/mole) for head-to-tail poly(vinyl chloride). The conjugated double bonds were formed by thermal and radiation decomposition of head-to-head poly(vinyl chloride), similar to head-to-tail poly(vinyl chloride). The probability of polyene formation by radiation-induced dehydrochlorination is larger than that by thermal decomposition and is affected by the conformation and the molecular motion of the main chain. This may be due to the alternative mechanism of dehydrochlorination in the thermal and radiation decomposition. The amount of head-to-head linkage of poly(vinyl chloride) samples prepared with various catalysts is dependent on polymerization temperature rather than the kinds of catalyst. Commercial poly(vinyl chloride) has 6–7 head-to-head linkages per 1000 monomeric units.  相似文献   

2.
 A cationic surfactant-selective electrode for sensitive analysis of cationic surfactants has been developed by using a plasticized poly (vinyl chloride) membrane based on a hydrophobic cation exchanger, sodium tetrakis (3,5-bis(trifluoromethyl)phenyl) borate. The electrode shows a Nernstian response to dodecyltrimethylammonium (DTA) ion in the concentration range from 8 × 10−7 M to 10−2 M with a slope of 55.3 ± 2.0 mV/decade. The electrode was used over a wide pH range of pH 2–12. The electrode is excellently selective for the DTA ion over inorganic anions, but interferences of other cationic surfactants such as cetylpyridinium ion and tetradecyldimethylbenzylammonium ion (zephiramine) are great. The present electrode was applied to determine total cationic surfactants in commercial disinfectants. Received February 27, 2002; accepted June 14, 2002  相似文献   

3.
Reaction of poly(vinyl chloride) with magnesium under various conditions was attempted, but poly(vinyl chloride) did not react with magnesium. The reactions of poly(vinyl chloride) with benzylmagnesium chloride and allylmagnesium chloride as Grignard reagents were carried out in tetrahydrofuran at reflux temperature. It was found that the chlorine atoms in the poly(vinyl chloride) were replaced by benzyl and allyl groups by the coupling reaction, and a small amount of Grignard reagent of poly(vinyl chloride) was formed by the magnesium–halogen exchange reaction. The extent of the substitution increased with increasing reaction time and concentration of the Grignard reagent.  相似文献   

4.
Abstract

Improved halogenation techniques for poly(1, 4-butadiene) have made well-defined head to head poly(vinyl chloride) and head to head poly(vinyl bromide) accessible in larger quantities. This allowed the preparation and study of blends of poly(vinyl chloride) or poly(vinyl bromide) with polycaprolactone and poly(methyl methacrylate); blends were also prepared between the poly(vinyl halides). The thermal behavior and the thermal degradation behavior of these blends were investigated. It was confirmed that head to head and head to tail poly(vinyl chloride) are immiscible over almost the entire range of compositions.  相似文献   

5.
IR spectral shifts of carbonyl vibrational absorption for ethyl acetate, which acts analogically as the structural unit of poly(methyl methacrylate), in cyclohexane, chloroform, chlorinated paraffins, poly(vinyl chloride) and chlorinated poly(vinyl chloride) were measured. The results suggest that there are specific interactions between the carbonyl groups and the chlorinated hydrocarbons which could be responsible for the apparent compatibility of poly(vinyl chloride)—poly(methyl methacrylate) and chlorinated poly(vinyl chloride)—poly(methyl methacrylate) blends. Additionally, the effects of the preparation mode of blend films on phase separation and observed compatibility are discussed.  相似文献   

6.
The construction and electrochemical response characteristics of poly (vinyl chloride) and poly (vinyl chloride) carboxylate membrane sensors for the determination of cyclophosphamide and ifosphamide are described. Based on the formation of an ion-pair complex between the drug cation and sodium tetraphenylborate, two poly (vinyl chloride) sensors, namely a cyclophosphamide membrane sensor and ifosphamide membrane sensor were fabricated. They show a linear response for both drugs over the concentration range 10−2–10−4 M with cationic slopes of 56 and 54.6 mV per concentration decade, for sensor 1 and sensor 2, respectively. Based on the interaction between the drug solution and the dissociated COOH groups in the poly (vinyl chloride) carboxylate, sensor 3 was fabricated. It shows a linear response for both drugs over the concentration range 10−3–10−5 M with a cationic slope of 49.7 mV per concentration decade. The direct potentiometric determination of cyclophosphamide and ifosphamide in their pharmaceutical preparations using the proposed sensors gave average recoveries of 101.3±0.6, 100.8±10.7 and 102.0±11.0% for the sensors 1, 2 and 3, respectively, which compares reasonably well with the data obtained using the British Pharmacopoeial method (1993). Sensors 1 and 2 were also used to follow up the stability of the drugs studied in the presence of their degradates. These degradation products have no diverse effect on the responses of sensors 1 and 2.  相似文献   

7.
Poly(vinyl chloride) is one of the major thermoplastics beside other commodities polymers like polyethylene and polystyrene. However, some of its main characteristics such as plasticity, thermal and photo stability are inferior to other commodity polymers. Adding nano scale inorganic fillers to poly(vinyl chloride) or other polymers in view to obtain polymer nanocomposites with superior properties has drawn the attention of many researchers in the last decades. Poly(vinyl chloride) nanocomposites are obtained mainly by in situ polymerization, solution based or mixing techniques. The resulting products show improvement of most important properties of poly(vinyl chloride) such as thermal, mechanical, rheological, flammability, antibacterial, etc. This paper presents preparation ways of poly(vinyl chloride) nanocomposites using different nano fillers and the improved properties compared with those of virgin poly(vinyl chloride).  相似文献   

8.
A concerted study of poly(vinyl chloride), chlorinated poly(vinyl chloride), and poly(vinylidene chloride) polymers by spectroscopy, thermal analysis, and pyrolysis-gas chromatography resulted in a proposed mechanism for their thermal degradation. Polymer structure with respect to total chlorine content and position was determined, and the influence of these polymer units on certain of the decomposition parameters is presented. Distinguishing differences were obtained for the kinetics of decomposition, reactive macroradical intermediates, and pyrolysis product distributions for these systems. It was determined that chlorinated poly(vinyl chloride) systems with long-chain ? CHCI? units were more thermally stable than the unchlorinated precursor, exhibited increasing activation energy for the dehydrochlorination, and produced chlorine-containing macroradical intermediates and chlorinated aromatic pyrolysis products. The poly(vinyl chloride) polymer was relatively less thermally stable, exhibited decreasing activation energy during dehydrochlorination, and produced polyenyl macro-radical intermediates and aromatic pyrolysis products.  相似文献   

9.
A short introduction to polymer-polymer miscibility and to the prediction of the miscibility of polymers is given. The four main types of polymer-modified poly(vinyl chloride) (plastification, impact modification, processing aids and heat deflection temperature modification) are explained by examples. The thermal stability of poly(vinyl chloride) in such blends is discussed; the effectivity of tin-stabilizers may be higher in such blends than in pure poly(vinyl chloride).  相似文献   

10.
 A potentiometric flow injection method for the determination of anionic polyelectrolytes utilizing a flow-through type surfactant-selective electrode detector is described. The method is based on the detection of the concentration increase of anionic surfactant liberated from a reagent stream containing an ion associate between cationic polyelectrolyte, poly(diallyldimethylammonium chloride) and anionic surfactant, dodecylbenzenesulfonate, which is caused by the formation of a polyion complex between cationic and anionic polyelectrolytes. The response of the electrode detector as a peak-shaped signal was obtained for injected anionic polyelectrolyte samples. A linear relationship was found to exist between peak height and the logarithmic concentration of potassium poly (vinyl sulfate) (PVSK) with a slope of 30 mV decade-1 in a concentration range of 1.0×10-4 to 1.0×10-3 mol/L. Identical relationships were obtained for sodium alginate and carageenan (also anionic polyelectrolytes) as for PVSK but with a lower sensitivity. The detection limit for PVSK was 2.5×10-5 mol/L. The relative standard deviation for 5 injections of a 2.5×10-4 mol/L PVSK solution was 1.3% and the sampling rate was ca. 10 samples h-1. Received: 9 April 1996/Revised: 8 July 1996/Accepted: 14 July 1996  相似文献   

11.
The poly(vinyl chloride) based nanocomposites with 3.0% weight content of the photo-active zinc oxide (ZnO) nanoparticles or the photo-inert calcium carbonate (CaCO3) nanoparticles was prepared by the solution mixing method, respectively. Their photo-oxidative degradation under ultraviolet irradiation (365 nm) at room temperature were compared with the pure poly(vinyl chloride) via Fourier transform infrared spectroscopy, Thermogravimetric analysis and x-ray photoelectron spectroscopy analyses. The results showed that the photo-inert calcium carbonate (CaCO3) nanoparticles hampered the photo-degradation of poly(vinyl chloride), whereas the photoactive zinc oxide (ZnO) nanoparticles accelerated the photodegradation of poly(vinyl chloride). Furthermore, the ZnO nanoparticles also favored the crosslinking reaction of the dehydrochlorinated poly(vinyl chloride).  相似文献   

12.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

13.
Christy A  Nyhus A  Kvalheim OM  Hagen S  Schanche J 《Talanta》1999,48(5):359-1120
Porous poly(para-divinylbenzene) and poly(meta-divinylbenzene) particles were synthesised from para-divinylbenzene and meta-divinylbenzene monomers with toluene and 2-ethylhexanoic acid as porogens. The residual vinyl groups in the particles were thereafter reacted using aluminium chloride with dichlorobenzene as a catalyst. The conversion of vinyl groups was followed by analysing polymer particles taken from the reaction mixture at different time intervals. Infrared spectroscopy both in the mid and near infrared region was used as the analytical technique. The intensity changes in the overtone absorption at 1628 nm due to the vinyl bonds were used as the basis for the quantification of the vinyl group consumption. Infrared spectra of the particles in the mid IR were also measured to understand changes taking place in the polymer matrix during the reaction. The results indicated that residual vinyl groups in these polymer particles were consumed during the reaction with aluminium chloride. The reaction of aluminium chloride with the polymer matrix was explained by proposing mechanisms for the formation of different products during the reaction. The complex formed between aluminium chloride and the residual vinyl groups seemed to induce addition of HCl to the vinyl group or leads to crosslinking and/or cyclisation in the case poly(para-DVB) particles. The reaction of aluminium chloride with poly(meta-DVB) takes place to a lesser extent.  相似文献   

14.
Poly(vinyl chloride)-poly(ethylene oxide) block copolymers have been synthesized in solution and emulsion. The polymers were made by first synthesizing macroazonitriles through the reaction of 4,4′-azobis-4-cyanovleryl chloride with hydroxy-terminated poly(ethylene oxide) of varying molecular weights. These macroazonitriles had molecular weights in the range of 3000–88,000 and degrees of polymerization from 5 to 24. Thermal decomposition of the azolinkages in the presence of vinyl chloride monomer yielded block copolymers containing form 2 to 20 wt % poly(ethylene oxide). The structures of the block copolymers were characterized by spectrometric, elemental and molecular weight analyses. The possibility of some graft polymerization occurring via free-radical extraction of a methylene hydrogen from the poly(ethylene oxide) was considered. Polymerization of vinyl chloride with an azonitrile initiator in the presence of a poly(ethylene oxide) yielded predominately homopolymer with some grafted poly(vinyl chloride).  相似文献   

15.
Binary mixtures consisting of ethylene-propylene copolymer functionalized with diethyl maleate (FEP) and poly(vinyl chloride) or polystyrene have been studied by means of the microscope-FT-IR system. Parallel DSC measurements have been carried out on the functionalized ethylene-propylene copolymer/poly(vinyl chloride) mixtures. Intermolecular interactions involving the carbonyl of the ester groups of the copolymer and the methin hydrogen of poly(vinyl chloride), through hydrogen bonding, have been evidenced in the various microareas of the samples. Intensity of these effects depends on composition in different domains of the blends. An increase of the gauche sequences with respect to the long and short trans sequences of poly-(vinyl chloride) chains has been detected with increasing the content of FEP. The partial compatibility of FEP/poly (vinyl chloride) blends has been confirmed by DSC measurements.  相似文献   

16.
The miscibility of polycarbonates derived from Bisphenol A or 2,5,2′,5′-tetramethyl-Bisphenol A with poly(vinyl chloride), chlorinated poly(vinyl chloride), and vinyl chloride-vinylidene chloride copolymers has been investigated. In miscible blends a shift of the position of the carbonyl absorption in the IR spectra indicates dipolar interactions between the polymers. The miscibility of chlorinated polyethylenes and reduced poly(vinyl chloride)s among each others demonstrates besides the importance of polar groups the influence of their distribution within the polymer chains for the compatibility of the polymers. The investigations on the miscibility have been carried out by differential scanning calorimetry, and by casting films with microscopical observation of the resulting structures.  相似文献   

17.
Four different plasticizers were applied to make different poly(vinyl chloride) (PVC) gels, poly(vinyl chloride)‐bis(2‐ethylhexyl)phthalate (PVC‐DOP), poly(vinyl chloride)‐di‐n‐butylphthalate, poly(vinyl chloride)‐bis(2‐ethylhexyl)adipate, and poly(vinyl chloride)‐tris(2‐ethylhexyl)trimellitate. In our previous work, we reported that PVC‐DOP gel exhibits novel and reversible deformations of creeping and jointlike bending induced by direct current electric fields. In this article, we scrutinize the effects of plasticizers on electromechanical actuations, that is, reversible creeping and bending actuation with four of the different aforementioned gels. We measured the relative creeping distance, creeping area, creeping velocity, current observed, and bending angle as a function of applied electric fields for different PVC gels and found significant differences among them. To explain these variations, we compared the utility of plasticizers on the basis of the properties of different PVC gels, such as plasticizer‐retention ability, bending modulus, elongation at break, and the dielectric constant. The mentioned properties of the PVC gels played vital roles on their electromechanical actuations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2119–2127, 2003  相似文献   

18.
Retardation of discoloration of poly(vinyl chloride) with diimide was studied in dimethylformamide at 130°C. with the use of p-toluenesulfonylhydrazide (PSH) as a source of diimide. A process was proposed that involved prolonging the induction periods of discoloration by inhibiting the development of conjugated polyene structure. The optimum proportion of PSH was one fourth of the poly(vinyl chloride), the best results. Furthermore, poly(vinyl chloride) discolored by thermal degradation in o-dichlorobenzene or gamma-ray irradiation under vacuum was decolorized in solution at 130°C. by addition of PSH. The decolorized poly(vinyl chloride) thus obtained was thermally stable compared with that obtained by oxidative methods.  相似文献   

19.
The interaction of mixed surfactants with polyelectrolytes   总被引:2,自引:0,他引:2  
The interactions between a linear polymer, sodium poly(2-acrylamide-2-methylpropane sulfonate), and two cationic surfactants, dodecylpyridinium chloride and tetradecylpyridinium chloride and their mixtures with different ratios, were studied by a potentiometric titration method using a surfactant-selective electrode. The ideal mixing/ideal cooperative binding model we had proposed previously was applied to successfully predict the binding isotherms of the mixed surfactant systems and the critical aggregation concentrations of the binding. The binding of surfactant mixtures to polymers is similar to the ideal mixed micelle formation and a sort of synergetic effect was found during the binding process. Received: 18 August 1998 Accepted in revised form: 6 November 1998  相似文献   

20.
The influence of the thermal treatment on the stability in time of the dispersion degree of films containing binary polymer mixtures, poly(vinyl chloride)/poly(methyl methacrylate), poly(vinyl chloride)/poly(vinyl acetate) and poly(vinyl acetate)/poly(methyl methacrylate), was studied by thermogravimetry and optical microscopy with phase contrast. The dispersion degree depends particularly on the composition of the polymer mixture and can be improved by thermal treatment at temperatures above the glass temperatures of both homopolymers. It seems that this thermal treatment yields exclusively metastable structures with a general tendency to phase separation in a short time after thermal treatment, the heterogeneity mixtures (as film) being more pronounced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号