首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water films stabilised by hydrophobic particles are found to spread rapidly up the inner walls of a glass vessel containing water and hydrophobic particles when it is shaken; shaking produces unstable particle-stabilised foam bubbles whose coalescence with the air/water interface drives film growth up the inner walls of the container.  相似文献   

2.
A two-dimensional theoretical model for solids-coated, or "armored," bubbles shows how the armor can support a liquid-vapor interface of reduced or reversed curvature between the particles, giving the bubble zero or even negative capillary pressure. The inward capillary force pulling the particles into the center of the bubble are balanced by large contact forces between the particles in the armor. Thus the bubble is stabilized against dissolution of gas into surrounding liquid, which otherwise would rapidly collapse the bubble. The stresses between particles in such cases are large and could drive sintering of the particles into a rigid framework. Earlier work on solids-coated bubbles assumed that solids can freely enter or leave the bubble surface as the bubble shrinks or expands. In such a case, armored bubbles would not be stable to gas dissolution into surrounding liquid. A new free-energy analysis, however, suggests that a shrunken bubble would not spontaneously expel a solid particle from its armor to relieve stress and allow the bubble to shrink further. Implications and limitations of the theory are discussed. Copyright 1999 Academic Press.  相似文献   

3.
Liquid foams are familiar from beer, frothed milk, or bubble baths; foams in general also play important roles in oil recovery, lightweight packaging, and insulation. Here a new class of foams is reported, obtained by frothing a suspension of colloidal particles in the presence of a small amount of an immiscible secondary liquid. A unique aspect of these foams, termed capillary foams, is the particle‐mediated spreading of the minority liquid around the gas bubbles. The resulting mixed particle/liquid coating can stabilize bubbles against coalescence even when the particles alone cannot. The coated bubbles are further immobilized by entrapment in a network of excess particles connected by bridges of the minority liquid. Capillary foams were prepared with a diverse set of particle/liquid combinations to demonstrate the generality of the phenomenon. The observed foam stability correlates with the particle affinity for the liquid interface formed by spreading the minority liquid at the bubble surface.  相似文献   

4.
We report the behavior of particle-stabilized bubbles (armored bubbles) when exposed to various classes and concentrations of surfactants. The bubbles are nonspherical, which is a signature of the jamming of the particles on the interface, and are stable to dissolution prior to the addition of surfactant. Armored bubbles exposed to surfactants, dissolve, and exhibit distinct morphological, microstructural, and lifetime changes, which correlate with the concentration of surfactant employed. For low concentrations of surfactant, an armored bubble remains nonspherical while dissolving, whereas for concentrations close to and above the surfactant cmc a bubble reverts to a spherical shape before dissolving. We propose a microstructural interpretation, supported by our experimental observations of particle dynamics on the bubble interface, that recognizes the role of interfacial jamming and stresses in particle-stabilization and surfactant-mediated destabilization of armored bubbles.  相似文献   

5.
Bubble and particle velocities in water and alcohols, under the influence of an electric field, were investigated in this work. Air bubbles were injected into the liquids through an electrified metal capillary insulated by glass with its tip left exposed. The end of the capillary from which the bubbles were released was conical in shape. Due to an electric field formed between the noninsulated capillary tip and a ground electrode immersed in the solvent, small bubbles were formed and used as tracers for the electrohydrodynamic (EHD) flow field. The pressure inside the capillary was measured for all liquids used in this study. For water, ethanol, and n-propanol, it was found that, at relatively low applied voltage, the pressure increases with voltage, reaches a maximum (pressure breakpoint), and then sharply decreases. This behavior is a result of the competition between the electric force appearing at the interface and the force due to the EHD flow near the capillary tip. The electric force tends to increase the pressure inside the capillary, while the EHD flow tends to decrease this pressure. For isopropanol and butanol, the pressure breakpoint was not observed in the range of voltage applied in the experiments. The EHD flow velocity was measured by using microbubbles and particles as flow tracers. An adaptive phase-Doppler velocimeter was employed to measure the velocity of bubbles, while the velocity of particles was measured by trajectory visualization of fluorescent particles. A discrepancy was observed between the two methods because of the location at which the measurements were made. It was found that average velocities of both bubbles and particles increase linearly with applied voltage. Experiments were also conducted to investigate pumping of water, which is a result of the EHD velocity near the capillary tip. The pumping flow rate was linearly related to the applied voltage and agreed well with EHD velocity measurements obtained from particle trajectories. Copyright 2000 Academic Press.  相似文献   

6.
In this Article, we show that inclined silicon surfaces patterned with poly(methacrylic acid) brushes are able to control the position and movement of 20 μm silica particles, which are propelled across the patterned surface by sedimentation forces. Three different types of behavior were observed depending on the angle between the direction in which a particle sedimented and the orientation of the polymer-brush silicon interface. At small angles, particles were found to sediment to the brush interface and then sediment following the direction of the brush interface. At larger angles, particles sedimented to the interface and then followed the direction of the brush interface, but then after a certain distance changed direction to pass over the interface. At the largest angles where the brush interface was approximately perpendicular to the motion of the particle, particles were found to travel over the interface unperturbed. This behavior was also found to be pH dependent, allowing the formation of pH responsive "gates", which allow particles to pass at low pH but not at high pH. It was also found that if patterned polymer brush surfaces were oriented in the correct way, they were able to control the number of particles present at specific locations.  相似文献   

7.
Very small bubbles which partially coat the surface of particles influence whether or not heterocoagulation between a particle and a bubble occurs. The electrostatic and van der Waals forces of interaction between particles and bubbles were calculated as a function of electrolyte concentration, particle size, and the size and distributions of these very small bubbles present on the particle surface. The height of the surface force barrier was compared with the hydrodynamic pressing force under conditions of flotation. The presence of these very small bubbles has a profound effect on the interaction between particles and bubbles and, in particular, strongly decreases the critical particle radius for heterocoagulation.  相似文献   

8.
The interaction between two bubbles coated with glass particles in the presence of a cationic surfactant (cetyltrimethylammonium bromide, CTAB) was studied experimentally. The time taken for two bubbles to coalesce was determined as a function of the fractional coverage of the surface by particles. The results suggested that the coalescence time increases with the bubble surface coverage. Interestingly, it was found that although the particles did not have any physical role in film rupture at low surface coverage, they still added resistance to film drainage. For particle-loaded bubbles, the initial resistance was due to the lateral capillary interactions between particles on the interface, which hold the particles firmly together. The coalescence dynamics of bubbles was also observed to be affected by the presence of attached particles.  相似文献   

9.
We study the alignment of micron-scale particles at air-water interfaces with unequal principle radii of curvature by optical microscopy. The fluid interface bends to satisfy the wetting conditions at the three phase contact line where the interface intersects the particle, creating deflections that increase the area of the interface. These deflections decay far from the particle. The far field interface shape has differing principle radii of curvature over length scales large compared to the particle. The deflections create excess area which depends on the angle of the particle with respect to the principle axes of the interface. We show that when particles create surface deflections with quadrupolar modes, the particles rotate to preferred orientations to minimize the free energy. In experiment, we focus on uniform surface energy particles, for which quadrupolar modes are forced by the particle shape. Analytical expressions for the torque and stable states are derived in agreement with experiment and confirmed computationally.  相似文献   

10.
The detachment force required to pull a microparticle from an air-liquid interface is measured using atomic force microscopy (AFM) and the colloidal probe technique. Water, solutions of sodium dodecyl sulfate (SDS), and silicone oils are tested in order to study the effects of surface tension and viscosity. Two different liquid geometries are considered: the air-liquid interface of a bubble and a liquid film on a solid substrate. It was shown that detaching particles from liquid films is fundamentally different than from bubbles or drops due to the restricted flow of the liquid phase. Additional force is required to detach a particle from a film, and the maximum force during detachment is not necessarily at the position where the particle breaks away from the interface (as seen in bubble or drop systems). This is due to the dynamics of meniscus formation and viscous effects, which must be considered if the liquid is constrained in a film. The magnitude of these effects is related to the liquid viscosity, film thickness, and detachment speed.  相似文献   

11.
In our previous paper, a method for preparing enormous surface-enhanced Raman scattering (SERS) active substrates through the aggregation of silver particles trapped at an air-water interface was reported. Here, further efforts were devoted to investigate the origin of assembling silver particle films by adsorbing nanoparticles from bulk colloids to the air-water interface. It was revealed that it is thermodynamically favorable for a colloidal particle in bulk colloids to adsorb to the air-water interface; however, a finite sorption barrier between it and the nearby particles usually restrains the adsorption process. When an electrolyte such as KCl, which is commonly used as an activating agent for additional SERS enhancement, was added into silver colloids, it largely reduced the sorption barrier. Thus, silver nanoparticles can break through the sorption barrier, pop up, and be trapped at the air-water interface. The trapped silver particles are more inclined to aggregate at the interface than those in bulk colloids due to the increase of van der Waals forces and the reduction of electrostatic forces. The morphology of the as-prepared silver particle films was characterized by scanning electron microscope, and their SERS activity was tested using NaSCN as a probe molecule. The surface enhancement of the silver particle films is about 1-2 orders of magnitude higher compared with that of silver colloids, because most of the silver particles in the films are in the aggregation form that provides enormous SERS enhancement. Furthermore, the stability of such type of films is much better that of colloid solutions.  相似文献   

12.
Air bubbles have been formed using partially hydrophobic silica nanoparticles as the stabilizer. The particles were of primary particle size 20 nm, chemically treated to different degrees with dichlorodimethylsilane to render them partially hydrophobic. Above a certain bubble size range (typically 80-microm diameter), the bubbles seemed to be almost indefinitely stable, while for any size above 20 microm their stability against disproportionation is far better than bubbles stabilized by any protein film investigated in previous studies. A possible theoretical justification for this observation is presented. Bubbles could be formed by shaking water with the particles, but a much higher volume fraction of bubbles was obtained by pressurizing the aqueous phase to 5 atm overnight followed by suddenly releasing the pressure to nucleate bubbles within the silica dispersion. Sonicating the silica dispersion before nucleation also gave more bubbles, which were also found to be more stable. There appeared to be an optimum degree of surface hydrophobicity that gave maximum foamability and foam stability, where around 20-33% of the silanol groups on the silica surface had been converted to dimethylsilane groups. However, a sharp increase in stability occurred when between 1.8 and 2 mol dm(-3) NaCl was also included in the aqueous phase. The change in stability due to inclusion of salt can be rationalized in terms of changes occurring in the value of the particle contact angle. The effects of increasing sonication and an optimum surface chemical treatment can be explained by the need to make the particles sufficiently hydrophobic so that they adsorb strongly enough, while at the same time minimizing their tendency to aggregate in the bulk aqueous phase, which hinders their adsorption. Furthermore, confocal laser scanning microscopy of the bubble dispersions suggests that a large volume fraction of stable bubbles is only formed when the particles adsorbed to the bubbles are also part of a spanning silica particle network in the bulk aqueous solution, forming a weak gel with a finite yield stress.  相似文献   

13.
The capture of solid particles suspended in aqueous solution by rising gas bubbles involves hydrodynamic and physicochemical processes that are central to colloid science. Of the collision, attachment and aggregate stability aspects to the bubble-particle interaction, the crucial attachment process is least understood. This is especially true of hydrophilic solids. We review the current literature regarding each component of the bubble-particle attachment process, from the free-rise of a small, clean single bubble, to the collision, film drainage and interactions which dominate the attachment rate. There is a particular focus on recent studies which employ single, very small bubbles as analysis probes, enabling the dynamic bubble-hydrophilic particle interaction to be investigated, avoiding complications which arise from fluid inertia, deformation of the liquid-vapour interface and the possibility of surfactant contamination.  相似文献   

14.
Experimental results of gas hold-up, power consumption and residence time of gas bubbles in a gas-solid-liquid system produced in an agitated vessel equipped with a high-speed impeller and a vertical tubular coil are presented in this paper. Critical agitator speed, needed for the dispersion of gas bubbles and solid particles in liquid were also identified. The studies were carried out in an agitated vessel of the inner diameter D = 0.634 m and the working liquid volume of about 0.2 m3. A tubular coil of the diameter of 0.7D, consisting of 24 vertical tubes of the diameter of 0.016D, was located inside the flat-bottomed vessel. The agitated vessel was equipped with a Rushton turbine with six blades or an A 315 impeller with four blades. Both impellers had diameter, d, equal to 0.33D. The vessel was filled with liquid up to the height H = D. In this study, air and particles of sea sand with the mean diameter of 335 μm and the concentration of up to 3.0 mass % were dispersed in distilled water as the liquid phase. The measurements were carried out within the turbulent regime of the fluid flow in the agitated vessel. Results of the measurements were processed graphically and mathematically. Lower values of the critical agitator speed, n JSG, needed for simultaneous dispersion of gas bubbles and particles with the solids concentration from 0.5 mass % to 2 mass %, were obtained for the vessel equipped with the A 315 impeller. Higher values of the specific power consumption were reached for the vessel with the Rushton turbine. Higher values of the gas hold-up and residence time of the gas bubbles in the fluid were obtained for the system equipped with the Rushton turbine. Results of the gas hold-up as a function of the specific power consumption, superficial gas velocity and solids concentration were approximated with good accuracy using Eq. (5).  相似文献   

15.
Particle-stabilized dispersions such as emulsions, foams and bubbles are catching increasing attentions across a number of research areas. The adsorption mechanism and role of these colloidal particles in stabilizing the oil-water or gas-water interfaces and how these particles interact at interfaces are vital to the practical use of these dispersion systems. Although there have been intensive investigations, problems associated with the stabilization mechanisms and particle-particle interactions at interfaces still remain to explore. In this paper, we first systematically review the historical understanding of particle-stabilized emulsions or bubbles and then give an overview of the most important and well-established progress in the understanding of particle-stabilized systems, including emulsions, foams and liquid marbles. The particle-adsorption phenomena have long been realized and been discussed in academic paper for more than one century and a quantitative model was proposed in the early 1980s. The theory can successfully explain the adsorption of solid particles onto interface from energy reduction approaches. The stability of emulsions and foams can be readily correlated to the wettability of the particles towards the two phases. And extensive researches on emulsion stability and various strategies have been developed to prepared dispersion systems with a certain trigger such as pH and temperature. After that, we discuss recent development of the interactions between particles when they are trapped at the interface and highlight open questions in this field. There exists a huge gap between theoretical approaches and experimental results on the interactions of particles adsorbed at interfaces due to demanding experimental devices and skills. In practice, it is customary to use flat surfaces/interfaces as model surfaces to investigate the particle-particle at interfaces although most of the time interfaces are produced with a certain curvature. It is shown that the introduction of particles onto interfaces can generate charges at the interfaces which could possibly account for the long range electrostatic interactions. Finally, we illustrate that particle-stabilized dispersions have been found wide applications in many fields and applications such as microcapsules, food, biomedical carriers, and dry water. One of the most investigated areas is the microencapsulation of actives based on Pickering emulsion templates. The particles adsorbed at the interface can serve as interfacial stabilizers as well as constituting components of shells of colloidal microcapsules. Emulsions stabilized by solid particles derived from natural and bio-related sources are promising platforms to be applied in food related industries. Emulsion systems stabilized by solid particles of the w/w (water-in-water) feature are discussed. This special type of emulsion is attracting increasing attentions due to their all water features. Besides of oil-water interface, particle stabilized air-water interface share similar stabilization mechanism and several applications reported in the literature are subsequently discussed. We hope that this paper can encourage more scientists to engage in the studies of particle-stabilized interfaces and more novel applications can be proposed based on this mechanism  相似文献   

16.
The formation and stability of liquid paraffin-in-water emulsions stabilized solely by positively charged plate-like layered double hydroxides (LDHs) particles were described here. The effects of adding salt into LDHs dispersions on particle zeta potential, particle contact angle, particle adsorption at the oil-water interface and the structure strength of dispersions were studied. It was found that the zeta potential of particles gradually decreased with the increase of salt concentration, but the variation of contact angle with salt concentration was very small. The adsorption of particles at the oil-water interface occurred due to the reduction of particle zeta potential. The structural strength of LDHs dispersions was strengthened with the increase of salt and particle concentrations. The effects of particle concentration, salt concentration and oil phase volume fraction on the formation, stability and type of emulsions were investigated and discussed in relation to the adsorption of particles at the oil-water interface and the structural strength of LDHs dispersions. Finally, the possible stabilization mechanisms of emulsions were put forward: the decrease of particle zeta potential leads to particle adsorption at the oil-water interface and the formation of a network of particles at the interface, both of which are crucial for emulsion formation and stability; the structural strength of LDHs dispersions is responsible for emulsion stability, but is not necessary for emulsion formation.  相似文献   

17.
This paper is concerned with the detachment of particles from coalescing bubble pairs. Two bubbles were generated at adjacent capillaries and coated with hydrophobic glass particles of mean diameter 66 μm. The bubbles were then positioned next to each other until the thin liquid film between them ruptured. The particles that dropped from the bubble surface during the coalescence process were collected and measured. The coalescence process was very vigorous and observations showed that particles detached from the bubble surfaces as a result of the oscillations caused by coalescence. The attached particles themselves and, to some extent the presence of the surfactant had a damping affect on the bubble oscillation, which played a decisive role on the particle detachment phenomena. The behaviour of particles on the surfaces of the bubbles during coalescence was described, and implications of results for the flotation process were discussed.  相似文献   

18.
We find that the gas phases of air bubbles covered with anionic or cationic polystyrene latex particles dissolve on exposure to cationic and catanionic surfactants. The particles on the bubble interface are released as singlets or aggregates when the surfactant has a single hydrophobic chain, while porous colloidal capsules (colloidosomes) with the same aqueous phase inside as out are obtained when the surfactant has two hydrophobic chains. The formation of colloidosomes from the particle-covered bubbles does not appear to depend significantly on the charge of the particles, which makes it unlikely that bilayers of surfactant are stabilizing the colloidosome. While the exact mechanism of formation remains an open question, our method is a simple one-step process for obtaining colloidosomes from particle-covered bubbles.  相似文献   

19.
Monolayers of silica particles at horizontal and vertical octane-water interfaces have been studied by microscopy. It is found that their structure and stability depend strongly on the particle hydrophobicity. Very hydrophobic silica particles, with a contact angle of 152 degrees measured through the water, give well-ordered monolayers at interparticle distances larger than 5 particle diameters which are stable toward aggregation and sedimentation. In contrast, monolayers of less-hydrophobic particles are disordered and unstable. Two-dimensional particle sedimentation has been observed in the case of vertical monolayers. The results have been analyzed with a simple two-particle model considering the sedimentation equilibrium as a balance between the long-range electrostatic repulsion through the oil, the gravity force, and the capillary attraction due to deformation of the fluid interface around particles. The value of the charge density at the particle-octane interface, 14.1 muC/m(2), found for the most hydrophobic particles is reasonable. It drastically decreases for particles with lower hydrophobicity, which is consistent with the order-disorder transition in monolayer structure reported by us before. The pair interactions between particles at a horizontal octane-water interface have been analyzed including the capillary attraction due to undulated three-phase contact line caused by nonuniform wetting (the contact angle hysteresis). The results are in agreement with the great stability of very hydrophobic silica particle monolayers detected experimentally, even at low pH at the point of zero charge of the particle-water interface, and with the aggregated structure of hydrophilic particle monolayers.  相似文献   

20.
This paper introduces a simple method for modelling non-spherical particles with a fixed contact angle at an interface whilst also providing a method to fix the particles orientation. It is shown how a wide variety of particle shapes (spherical, ellipsoidal, disc) can be created from a simple initial geometry containing only six vertices. The shapes are made from one continuous surface with edges and corners treated as smooth curves not discontinuities. As such, particles approaching cylindrical and orthorhombic shapes can be simulated but the contact angle crossing the edges will be fixed. Non-spherical particles, when attached to an interface can cause large distortions in the surface which affect the forces acting on the particle. The model presented is capable of resolving this distortion of the surface around the particle at the interface as well as allowing for the particle's orientation to be controlled. It is shown that, when considering orthorhombic particles with rounded edges, the flatter the particle the more energetically stable it is to sit flat at the interface. However, as the particle becomes more cube like, the effects of contact angle have a greater effect on the energetically stable orientations. Results for cylindrical particles with rounded edges are also discussed. The model presented allows the user to define the shape, dimensions, contact angle and orientation of the particle at the interface allowing more in-depth investigation of the complex phenomenon of 3D film distortion around an attached particle and the forces that arise due to it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号