共查询到20条相似文献,搜索用时 84 毫秒
1.
J. G. Liu M. H. He H. W. Zhou Z. G. Qian F. S. Wang S. Y. Yang 《Journal of polymer science. Part A, Polymer chemistry》2002,40(1):110-119
Organosoluble polyimides were synthesized with the alicyclic dianhydride 1,8‐dimethylbicyclo[2,2,2]oct‐7‐ene‐2,3,5,6‐tetracarboxylic dianhydride and aromatic diamines. The polyimides possessed good solubility both in strong dipolar solvents and in common solvents; the thermal decomposition temperature of the polyimides exceeded 420 °C. Strong and flexible films of the polyimides, with the cutoff of ultraviolet–visible absorption lower than 310–320 nm, exhibited good features as the alignment layers for nematic liquid crystals with pretilt angles of 1.5–2.9°. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 110–119, 2002 相似文献
2.
Synthesis and characterization of novel polyimides derived from pyridine-bridged aromatic dianhydride and various diamines 总被引:2,自引:0,他引:2
A new kind of pyridine-bridged aromatic dianhydride monomer, 4-phenyl-2,6-bis[4-(3,4-dicarboxyphenoxy)phenyl]-pyridine dianhydride (PPDA), was successfully synthesized by modified Chichibabin reaction of benzaldehyde and substituted acetophenone, 4-(3,4-dicyanophenoxy)-acetophenone (DCAP), followed by acidic hydrolysis of the intermediate tetranitrile and cyclodehydration of the resulting tetraacid. The pyridine-bridged aromatic dianhydride was employed to synthesized a series of new pyridine-containing polyimides by polycondensation with various aromatic diamines in N-methyl-2-pyrrolidone (NMP) via the conventional two-step method, i.e. ring-opening polycondensation forming the poly(amic acid)s and further thermal or chemical imidization forming polyimides. The inherent viscosities of the resulting polyimides were in the range of 0.49-0.63 dL/g, and most of them were soluble in aprotic amide solvents and cresols, such as N,N-dimethylacetamide (DMAc), NMP, and m-cresol, etc. Meanwhile, strong and flexible polyimide films were obtained, which have good thermal stability with the glass transition temperatures (Tg) of 223-256 °C, the temperature at 5% weight loss of 523-569 °C, and the residue at 700 °C of 52.1-62.7% in nitrogen, as well as have outstanding mechanical properties with the tensile strengths of 70.7-97.6 MPa and elongations at breakage of 7.9-9.7%. Wide-angle X-ray diffraction measurements revealed that these polyimides were predominantly amorphous. 相似文献
3.
Meenakshi Goyal Tatsuo Inoue Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1998,36(1):39-47
Aliphatic polyimides (P-XBTA) having inherent viscosities of 0.4–1.4 dL/g were readily synthesized by the high-pressure polycondensation of the salt monomers, composed of aliphatic diamines having various methylene chain lengths (X = 4–12) and 3,3′,4,4′-benzophenonetetracarboxylic acid (BTA), under 200–250 MPa at 200–320°C. The salt monomers with odd-numbered methylene units were found to be more susceptible to crosslinking than those containing even-numbered methylene chains. The polyimides having even-numbered methylene units were highly crystalline, whereas those with odd-numbered methylene chains were crosslinked and therefore amorphous with only one exception, i.e., P-11BTA. The thermal behavior of these polymers was also studied. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 39–47, 1998 相似文献
4.
Xing‐Zhong Fang Qing‐Xuan Li Zhen Wang Zheng‐Hua Yang Lian‐Xun Gao Meng‐Xian Ding 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2130-2144
A new synthetic route to 2,2′,3,3′‐BTDA (where BTDA is benzophenonetetracarboxylic dianhydride), an isomer of 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA, is described. Single‐crystal X‐ray diffraction analysis of 2,2′,3,3′‐BTDA has shown that this dianhydride has a bent and noncoplanar structure. The polymerizations of 2,2′,3,3′‐BTDA with 4,4′‐oxydianiline (ODA) and 4,4′‐bis(4‐aminophenoxy)benzene (TPEQ) have been investigated with a conventional two‐step process. A trend of cyclic oligomers forming in the reaction of 2,2′,3,3′‐BTDA and ODA has been found and characterized with IR, NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and elemental analyses. Films based on 2,2′,3,3′‐BTDA/TPEQ can only be obtained from corresponding polyimide (PI) solutions prepared by chemical imidization because those from their polyamic acids by thermal imidization are brittle. PIs from 2,2′,3,3′‐BTDA have lower inherent viscosities and worse thermal and mechanical properties than the corresponding 2,3′,3′,4′‐BTDA‐ and 3,3′,4,4′‐BTDA‐based PIs. PIs from 2,2′,3,3′‐BTDA and 2,3′,3′,4′‐BTDA are amorphous, whereas those from 3,3′,4,4′‐BTDA have some crystallinity, according to wide‐angle X‐ray diffraction. Furthermore, PIs from 2,2′,3,3′‐BTDA have better solubility, higher glass‐transition temperatures, and higher melt viscosity than those from 2,3′,3′,4′‐BTDA and 3,3′,4,4′‐BTDA. Model compounds have been prepared to explain the order of the glass‐transition temperatures found in the isomeric PI series. The isomer effects on the PI properties are discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2130–2144, 2004 相似文献
5.
《中国化学快报》2016,(3)
A novel triptycene-based dianhyride as a shape-persistent building block with high internal free volume was conveniently synthesized via solvothermal method.Subsequently,three all-aromatic polyimides,Pla,PIb and PIc,were prepared by a one-step polycondensation of triptycene-2,3,6,7-tetracarboxylic dianhydride with 2,2'-bis(trifluoromethyl)benzidine,m-tolidine and 3,3',5,5'-tetramethylbenzidine,respectively.The corresponding polymers exhibit good solubility,excellent thermal stability,significant microporosity with large BET surface areas of up to 623 m~2 g~1 as well as an unexpected optical property with a transmittance of ~85%at 450 nm as ~20μm membranes. 相似文献
6.
Mitsuru Ueda Masayoshi Takahashi Shohei Hishiki Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1979,17(8):2459-2468
A new six-membered tetracarboxylic dianhydride, 2,5-di(carboxymethyl)terephthalic dianhydride, was synthesized in six steps, starting with pyromellitic dianhydride. The polyimides were prepared from dianhydride and diamines in a two-step procedure. The polyamic acids, which were formed in the first step by the ring-opening polyaddition in DMAc, had inherent viscosities of 0.1–0.7 and were converted to the polyimides by thermal cyclodehydration. These polyimides were insoluble in organic solvents. Thermogravimetric analysis (TGA) in air and nitrogen atmospheres revealed that rapid decomposition began above 400°C for aromatic polyimides. 相似文献
7.
Two kinds of aromatic, unsymmetrical diamines with ether-ketone group, 3-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone and 4-amino-4′-(4-amino-2-trifluoromethylphenoxy)-benzophenone, were successfully synthesized with two different synthetic routes. Then, they were polymerized with 4,4′-oxydiphthalic anhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, and 2,2′-bis(3,4-dicarboxyphenyl)-hexafluoropropane dianhydride to form a series of fluorinated polyimides via a conventional two-step thermal or chemical imidization method. The resulting polyimides were characterized by measuring their solubility, viscosity, mechanical properties, IR-FT, and thermal analysis. The results showed that the polyimides had inherent viscosities of 0.48-0.68 dl/g and were easily dissolved in bipolarity solvents and common, low-boiling point solvents. Meanwhile, the resulting strong and flexible polyimide films exhibited excellent thermal stability, e.g., decomposition temperatures (at 10% weight loss) are above 575 °C and glass-transition temperatures in the range of 218-242 °C. The polymer films also showed outstanding mechanical properties, such as tensile strengths of 86.5-132.8 MPa, elongations at break of 8-14%, and initial moduli of 1.32-1.97 GPa. These outstanding combined features ensure that the polymers are desirable candidate materials for advanced applications. 相似文献
8.
Qianqian BuShujiang Zhang Hui LiYanfeng Li Chenliang GongFengchun Yang 《Polymer Degradation and Stability》2011,96(10):1911-1918
A novel method for the preparation of an asymmetric fluorinated aromatic diamine, 3,4′-bis(4-amino-2-trifluoromethylphenoxy)-benzophenone was investigated. This new diamine containing trifluoromethyl side group was synthesized from the nucleophilic substitution reaction of 2-chloro-5-nitrobenzotrifluoride and 3,4′-dihydroxybenzo phenone in the presence of potassium carbonate, followed by catalytic reduction with SnCl2·6H2O and concentrated hydrochloric acid. This novel diamine was used to react with different commercially available aromatic tetracarboxylic dianhydrides to prepare polyimides via thermal or chemical imidization. The polyimide properties such as inherent viscosity, solubility, thermal and surface properties were investigated to illustrate the contribution of the trifluoromethyl group and the asymmetry structure of the polyimide. The polyimides obtained had good thermal stability and the glass transition temperature values ranged from 225 to 267 °C. All of these novel polyimides held 10% weight loss at the temperature above 543 °C in air and left more than 47% residue even at 800 °C in nitrogen. The inherent viscosities of the obtained polyimides were above 0.73 dL/g and were easily dissolved in both polar, aprotic solvents and some low-boiling-point solvents. Moreover, these PI films had dielectric constants of 2.94-3.53 (1 kHz), with moisture absorption in the range of 0.07-0.34 wt%. In comparison of the PIs (5) series with the analogous symmetric PIs (6) series based on 4,4′-bis(4-amino-2-trifluoromethylphenoxy)-benzophenone, the (5) series revealed better solubility, low dielectric constant and moisture absorption. 相似文献
9.
Guey-Sheng Liou Masaki Maruyama Masa-Aki Kakimoto Yoshio Imai 《Journal of polymer science. Part A, Polymer chemistry》1998,36(12):2021-2027
A new aromatic tetracarboxylic dianhydride having a crank and twisted noncoplannar structure, 2,2′-bis(3,4-dicarboxyphenoxy)biphenyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with biphenyl-2,2′-diol, followed by hydrolysis and cyclodehydration. The biphenyl-2,2′-diyl-containing aromatic polyimides having inherent viscosities up to 0.66 dL/g were obtained by the conventional two-step procedure starting from the dianhydride monomer and various aromatic diamines. Most of the polyimides were readily soluble in amide-type solvents such as N,N-dimethylacetamide and N-methyl-2-pyrrolidone. The aromatic polyimides had glass transition temperatures in the range of 205–242°C, and began to lose weight around 415°C, with 10% weight loss being recorded at about 500°C in air. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2021–2027, 1998 相似文献
10.
Structure-property study of polyimides derived from PMDA and BPDA dianhydrides with structurally different diamines 总被引:1,自引:0,他引:1
A series of aromatic diamines were polymerized with two aromatic dianhydrides, pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylic dianhydride, and the resulting poly(amic acid)s were thermally cyclodehydrated to aromatic polyimides. The polyimides were characterized by determining the glass transition temperatures (Tg), thermal stability, coefficients of thermal expansion, and wide-angle X-ray diffraction. Structure-property relationships are elucidated and discussed in terms of the structural fragments in the polymer chain. The PMDA-based polyimides generally revealed a higher Tg than the corresponding BPDA-based analogues. Generally, the dilution of the imide content by the insertion of oxyphenylene segments into the diamines significantly reduced the Tg. The introduction of m- or o-phenylene units into the polymer backbone usually resulted in a decrease in Tg. The attachment of pendant groups on the backbone may lead to decreased or increased Tgs, depending on the structure of pendant groups. As evidenced by X-ray diffraction, the polyimides derived from rigid, rod-like diamines or the diamines having two or three p-oxyphenylene showed a higher crystalline tendency. The presence of aliphatic pendant groups slightly reduced the thermal stability of the polyimides. The other structural changes did not show a dramatic influence on the thermal stability. Some polyimides obtained from p- or m-phenylenediamine had low thermal expansion coefficients below 2×10−5°C−1. 相似文献
11.
Claudio A. Terraza Jin‐Gang Liu Yasuhiro Nakamura Yuji Shibasaki Shinji Ando Mitsuru Ueda 《Journal of polymer science. Part A, Polymer chemistry》2008,46(4):1510-1520
Highly refractive and transparent polyimides (PIs) based on fluorene‐bridged and sulfur‐containing monomers have been developed. An aromatic dianhydride, 4,4′‐[p‐thiobis(phenylenesulfanyl)]diphthalic anhydride (3SDEA), was polymerized with several fluorene‐containing diamines, including commercially available 9,9′‐bis(p‐aminophenyl)fluorene (APF), 9,9′‐bis[4‐(p‐aminophenoxy)phenyl]fluorene (OAPF), and newly synthesized 9,9′‐bis[4‐(p‐aminophenyl)sulfanylphenyl]fluorene (ASPF) to afford series A PIs. Meanwhile, series B PIs were obtained from a new dianhydride, 4,4′‐[(9H‐fluorene‐9‐ylidene)bis(p‐phenylsulfanyl)]diphthalic anhydride (FPSP) and two aromatic diamines, ASPF and 4,4′‐thiobis[(p‐phenylenesulfanyl)aniline] (3SDA) via a two‐step polycondensation procedure. The PIs exhibit good thermal stabilities, such as relatively high glass transition temperatures in the range of 220–270 °C and high initial thermal decomposition temperatures (T10%) exceeding 490 °C. The 9,9′‐disubstituted fluorene moieties endow the PI films with good optical transparency. The optical transmittances of the PI films at 450 nm are all higher than 80% for the thickness of about 10 μm. Furthermore, the highly aromatic fluorene moiety and flexible thioether linkages in the molecular chains of the PIs provide them with high refractive indices of 1.6951–1.7258 and small birefringence of 0.0056–0.0070. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1510–1520, 2008 相似文献
12.
Nanwen Li Zhiming Cui Suobo Zhang Shenghai Li 《Journal of polymer science. Part A, Polymer chemistry》2008,46(8):2820-2832
A sulfonated dianhydride monomer, 6,6′‐disulfonic‐4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (SBTDA), was successfully synthesized by direct sulfonation of the parent dianhydride, 4,4′‐binaphthyl‐1,1′,8,8′‐tetracarboxylic dianhydride (BTDA), using fuming sulfuric acid as the sulfonating reagent. A series of sulfonated homopolyimides were prepared from SBTDA and various common nonsulfonated diamines. The resulting polymer electrolytes, which contain ion conductivity sites on the deactivated positions of the aryl backbone rings, displayed high proton conductivities of 0.25–0.31 S cm?1 at 80 °C. The oxidative stability test indicated that the attachment of the ? SO3H groups onto the dianhydride units did not deteriorate the oxidative stability of the SPI membranes. The better membranes were achieved by the copolymerization of nonsulfonated diamine, SBTDA, and BTDA. Copolymer membrane synthesized from hexane‐1,6‐diamine, SBTDA, and BTDA displayed excellent water stability of more than 1000 h at 90 °C, while its proton conductivity was still at a high level (comparable to that of Nafion 117). Furthermore, the novel block copolymer ( II‐b ) displayed higher proton conductivity compared with the random one ( II‐r ) obviously, probably due to the slightly higher water uptake and better microphase separated morphology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2820–2832, 2008 相似文献
13.
Masatoshi Hasegawa Daiki Hirano Mari Fujii Misako Haga Eiichiro Takezawa Shinya Yamaguchi Atsushi Ishikawa Takashi Kagayama 《Journal of polymer science. Part A, Polymer chemistry》2013,51(3):575-592
This work presents novel colorless polyimides (PIs) derived from 1R,2S,4S,5R‐cyclohexanetetracarboxylic dianhydride (H″‐PMDA). Isomer effects were also discussed by comparing with PI systems derived from conventional hydrogenated pyromellitic dianhydride, that is, 1S,2R,4S,5R‐cyclohexanetetracarboxylic dianhydride (H‐PMDA). H″‐PMDA was much more reactive with various diamines than H‐PMDA, and the former led to PI precursors with much higher molecular weights. The results can be explained from the quite different steric structures of these isomers. The thermally imidized H″‐PMDA‐based films were colorless regardless of diamines because of inhibited charge‐transfer interaction. In particular, the H″‐PMDA/4,4′‐oxydianiline system simultaneously achieved a very high Tg exceeding 300 °C, high toughness (elongation at break > 70%), and good solution processability. In contrast, the H‐PMDA‐based counterparts were essentially insoluble. The outstanding solubility of the former probably results from disturbed chain stacking by its nonplanar steric structure. An advantage of chemical imidization process is also proposed. In some cases, a copolymerization approach with an aromatic tetracarboxylic dianhydride was effective to improve the thermal expansion property. The results suggest that the H″‐PMDA‐based PI systems can be promising candidates for novel high‐temperature plastic substrate materials in electronic paper displays. A potential application as optical compensation film materials in liquid crystal displays (LCD) is also proposed in this work. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013 相似文献
14.
Yuejin Tong Wenxi Huang Jun Luo Mengxian Ding 《Journal of polymer science. Part A, Polymer chemistry》1999,37(10):1425-1433
2,2,′3,3′‐Biphenyltetracarboxylic dianhydride (2,2,′3,3′‐BPDA) was prepared by a coupling reaction of dimethyl 3‐iodophthalate. The X‐ray single‐crystal structure determination showed that this dianhydride had a bent and noncopolanar structure, presenting a striking contrast to its isomer, 3,3,′4,4′‐BPDA. This dianhydride was reacted with aromatic diamines in a polar aprotic solvent such as N,N‐dimethylacetamide (DMAc) to form polyamic acid intermediates, which imidized chemically to polyimides with inherent viscosities of 0.34–0.55 dL/g, depending on the diamine used. The polyimides from 2,2,′3,3′‐BPDA exhibited a good solubility and were dissolved in polar aprotic solvents and polychlorocarbons. These polyimides have high glass transition temperatures above 283°C. Thermogravimetric analyses indicated that these polyimides were fairly stable up to 500°C, and the 5% weight loss temperatures were recorded in the range of 534–583°C in nitrogen atmosphere and 537–561°C in air atmosphere. All polyimides were amorphous according to X‐ray determination. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1425–1433, 1999 相似文献
15.
Sheng-Huei Hsiao Guey-Sheng Liou Shin-Hung Chen 《Journal of polymer science. Part A, Polymer chemistry》1998,36(10):1657-1665
A new naphthalene unit-containing bis(ether anhydride), 2,6-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was synthesized in three steps starting from the nucleophilic nitrodisplacement reaction of 2,6-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were prepared using a conventional two-step polymerization process from the bis(ether anhydride) and various aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.65–2.03 dL/g. The films of poly(ether imide)s derived from two rigid diamines, i.e. p-phenylenediamine and benzidine, crystallized during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These aromatic poly(ether imide) films had yield strengths of 104–131 MPa, tensile strengths of 102–153 MPa, elongation to break of 8–87%, and initial moduli of 1.6–3.2 GPa. The glass transition temperatures (Tg's) of poly(ether imide)s were recorded in the range of 220–277°C depending on the nature of the diamine moiety. All polymers were stable up to 500°C, with 10% weight loss being recorded above 550°C in both air and nitrogen atmospheres. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1657–1665, 1998 相似文献
16.
Yaw-Terng Chern 《Journal of polymer science. Part A, Polymer chemistry》1996,34(1):125-131
New polyimides containing diamantane units were prepared by a conventional two-step method starting from 1,6-diaminodiamantane and aromatic dianhydrides. The intermediate poly(amic acid)s had inherent viscosities of 0.33–0.55 dL/g. These polyimides did not decompose below 400°C in air or nitrogen atmosphere, and the temperature at 5% weight loss were above 491°C. The glass transition temperatures of the polyimides were found to be 375–429°C by DSC. These polyimides had almost the same semicrystalline patterns and exhibited crystalline diffraction peak (2 θ) at around 15°. The polyimide Vb exhibited a melting endothermic peak at 514°C. © 1996 John Wiley & Sons, Inc. 相似文献
17.
Yoshio Imai Katsunori Kojima 《Journal of polymer science. Part A, Polymer chemistry》1972,10(7):2091-2096
The reaction of phthalic thioanhydride and aniline yielded N-phenylphthalimide quite readily. The reaction was strongly dependent on solvent and temperature. Various additives tried as a reaction promoter were almost ineffective. By the extension of the model reaction, polyimides were prepared in a simple one-step synthesis from pyromellitic dithioanhydride and aromatic diamines in dimethylacetamide or other solvents. Polymers with inherent viscosity up to 0.3 in concentrated sulfuric acid were obtained in approximately quantitative yield. 相似文献
18.
Guey-Sheng Liou 《Journal of polymer science. Part A, Polymer chemistry》1998,36(11):1937-1943
Aromatic tetracarboxylic dianhydride having crank and twisted noncoplanar structure, 2,2′-bis(3,4-dicarboxyphenoxy)-1,1′-binaphthyl dianhydride, was synthesized by the reaction of 4-nitrophthalonitrile with 2,2′-dihydroxy-1,1′-binaphthyl, followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). Binaphthyl-2,2′-diyl–containing novel aromatic polyimides having inherent viscosities up to 0.67 dL/g were obtained by the one-step polymerization process starting from the bis(ether anhydride) and various aromatic diamines. All the polyimides showed typical amorphous diffraction patterns. Most of the polyimides were readily soluble in common organic solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and pyridine. These aromatic polyimides had glass transition temperatures in the range of 280–350°C, depending on the nature of the diamine moiety. All polymers were stable up to 400°C, with 10% weight loss being recorded above 485°C in air. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1937–1943, 1998 相似文献
19.
Yaw-Terng Chern Wan-Ho Chung 《Journal of polymer science. Part A, Polymer chemistry》1996,34(1):117-124
1,3-Diaminoadamantane (I) was used as a monomer with various aromatic dicarboxylic acyl chlorides and dianhydrides to synthesize polyamides and polyimides, respectively. Polyamides having inherent viscosities of 0.10–0.27 dL/g were prepared by low-temperature solution polycondensation. The polyamides were soluble in a variety of solvents such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), pyridine, dioxane, and nitrobenzene. These polyamides had glass transition temperatures in the 179–187°C range and 5% weight loss temperatures occurred at up to 354°C. Polyimides based on diamine I and various aromatic dianhydrides were synthesized by the two-stage procedure that included ring-opening to form polyamic acids, followed by thermal conversion to polyimides. The polyamic acids had inherent viscosities of 0.14–0.38 dL/g. The glass transition temperature of these polyimides were in the 245–303°C range and showed almost no weight loss up to 350°C under air and nitrogen atmosphere. © 1996 John Wiley & Sons, Inc. 相似文献
20.
Sheng-Huei Hsiao Kuan-Yu Chu 《Journal of polymer science. Part A, Polymer chemistry》1997,35(11):2281-2287
A naphthalene unit-containing bis(ether anhydride), 2,7-bis(3,4-dicarboxyphenoxy)naphthalene dianhydride, was prepared in three steps starting from the nucleophilic nitrodisplacement reaction of 2,7-dihydroxynaphthalene and 4-nitrophthalonitrile in N,N-dimethylformamide (DMF) solution in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate bis(ether dinitrile) and subsequent dehydration of the resulting bis(ether diacid). High-molar-mass aromatic poly(ether imide)s were synthesized using a conventional two-stage polymerization process from the bis(ether anhydride) and ten aromatic diamines. The intermediate poly(ether amic acid)s had inherent viscosities of 0.95–2.67 dL/g. The films of poly(ether imide)s derived from two rigid diamines, that is, p-phenylenediamine and benzidine, crystallized and embrittled during the thermal imidization process. The other poly(ether imide)s belonged to amorphous materials and could be fabricated into transparent, flexible, and tough films. These poly(ether imide) films had yield strengths of 91–115 MPa, tensile strengths of 89–136 MPa, elongation to break of 11–45%, and initial moduli of 1.7–2.2 GPa. The Tgs of poly(ether imide)s were recorded in the range of 222–256°C depending on the nature of the diamine moiety. All polymers were thermally stable up to 500°C, with 10% weight loss being recorded above 540°C in air and nitrogen atmospheres. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2281–2287, 1997 相似文献