首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let be the exterior of the closed unit ball. Consider the self-similar Euler system
Setting α = β = 1/2 gives the limiting case of Leray’s self-similar Navier–Stokes equations. Assuming smoothness and smallness of the boundary data on ∂Ω, we prove that this system has a unique solution , vanishing at infinity, precisely
The self-similarity transformation is v(x, t) = u(y)/(t* − t)α, y = x/(t* − t)β, where v(x, t) is a solution to the Euler equations. The existence of smooth function u(y) implies that the solution v(x, t) blows up at (x*, t*), x* = 0, t* < + ∞. This isolated singularity has bounded energy with unbounded L 2 − norm of curl v.  相似文献   

2.
This paper is concerned with the asymptotic stability of degenerate stationary waves for viscous gases in the half space. We discuss the following two cases: (1) viscous conservation laws and (2) damped wave equations with nonlinear convection. In each case, we prove that the solution converges to the corresponding degenerate stationary wave at the rate t −α/4 as t → ∞, provided that the initial perturbation is in the weighted space L2a=L2(\mathbb R+; (1+x)a dx){L^2_\alpha=L^2({\mathbb R}_+;\,(1+x)^\alpha dx)} . This convergence rate t −α/4 is weaker than the one for the non-degenerate case and requires the restriction α < α*(q), where α*(q) is the critical value depending only on the degeneracy exponent q. Such a restriction is reasonable because the corresponding linearized operator for viscous conservation laws cannot be dissipative in L2a{L^2_\alpha} for α > α*(q) with another critical value α*(q). Our stability analysis is based on the space–time weighted energy method in which the spatial weight is chosen as a function of the degenerate stationary wave.  相似文献   

3.
4.
A new method of formulating dyadic Green‘s functions in lossless , reciprocal and unbounded chiral medium was presented. Based on Helmholtz theorem and the nondivergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic Green‘s function equation was first decomposed into the nondivergence electrical vector dyadic Green‘s function equation and irrotational electrical vector dyadic Green‘s function equation, and then Fourier‘s transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic Green‘s function in chiral media. It can avoid having to use the wavefield decomposition method and dyadic Green‘s function eigenfunction expansion technique that this method is used to derive the dyadic Green‘s functions in chiral media.  相似文献   

5.
We establish the existence of Lipschitz stable invariant manifolds for semiflows generated by a delay equation x′ = L(t)x t + f (t, x t , λ), assuming that the linear equation x′ = L(t)x t admits a polynomial dichotomy and that f is a sufficiently small Lipschitz perturbation. Moreover, we show that the stable invariant manifolds are Lipschitz in the parameter λ. We also consider the general case of nonuniform polynomial dichotomies.  相似文献   

6.
We investigate the asymptotic behavior of solutions of the damped nonlinear oscillator equation
where uf(u) > 0 for u ≠ 0, a(t) ≥ 0, and α is a positive constant with 0 < α ≥ 1. The case α = 1 has been investigated by a number of other authors. Here, it is shown that the behavior of solutions in the case of sublinear damping (0 < α < 1) is completely different from that in the case of linear damping (α = 1). Sufficient conditions for all nonoscillatory solutions to converge to zero and sufficient conditions for the existence of a nonoscillatory solution that does not converge to zero are given. We also give sufficient conditions for all solutions to be nonoscillatory. Some open problems for future research are also indicated. __________ Published in Neliniini Kolyvannya, Vol. 8, No. 2, pp. 186–200, April–June, 2005.  相似文献   

7.
A closed-form model for the computation of temperature distribution in an infinitely extended isotropic body with a time-dependent moving-heat sources is discussed. The temperature solutions are presented for the sources of the forms: (i) 01(t)=0 exp(−λt), (ii) 02(t) =0(t/t *)exp(−λt), and 03(t)=0[1+a cost)], where λ and ω are real parameters and t * characterizes the limiting time. The reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation of an incomplete gamma function Γ(α,x;b) and its decomposition C Γ and S Γ. The solutions are presented for moving, -point, -line, and -plane heat sources. It is also demonstrated that the present analysis covers the classical temperature solutions of a constant strength source under quasi-steady state situations. Received on 13 June 1997  相似文献   

8.
This investigation explores the mass/heat transfer from a wall-mounted block in a rectangular fully developed channel flow. The naphthalene sublimation scheme was used to measure the level of local mass transfer from the block’s surfaces. The heat transfer coefficient can be obtained by analogy between heat and mass transfer. The effects of the Reynolds number on the local mass transfer from the block’s surfaces have been widely discussed. Results showed that, owing to the flow complexity induced by vortices around the block, the block’s surfaces appeared four different spatial Sherwood number distributions, termed “Wave type”, “U type”, “Slant type”, and “Pit type”. A change in the Reynolds number significantly altered the spatial Sherwood number distributions on the block’s surfaces. Besides, four correlations between the Reynolds number and the surface-averaged Sherwood number were presented for the front, top, side, and rear surfaces of the block at a given block’s height, for the purpose of practical applications.  相似文献   

9.
The present paper deals with the prediction of three-dimensional fluid flow and heat transfer in rib-roughened ducts of square cross-section, which are either stationary, or rotate in orthogonal mode. The main objective is to assess how a recently developed variant of a cubic non-linear kε model (proposed by Craft et al. Flow Turbul Combust 63:59–80, 1999) can predict three-dimensional flow and heat transfer characteristics through stationary and rotating ribbed ducts. The present paper discusses turbulent air flow and heat transfer through two different configurations, namely: (I) a stationary square duct with “in-line” normal and (II) a square duct with normal ribs in a “staggered” arrangement under stationary and rotating conditions, with the axis of rotation normal to the flow direction and parallel to the ribs. In this paper the flow and thermal predictions of the linear kε model (EVM) are also included, as a set of baseline predictions. The mean flow predictions show that both linear and non-linear kε models can successfully reproduce most of the measured data for stream-wise and cross-stream velocity components. Moreover, the non-linear model is able to produce better results for the turbulent stresses. The heat transfer predictions show that both EVM and NLEVM2, the more recent variant of the non-linear kε, with the algebraic length-scale correction term, overestimate the measured Nusselt numbers for both geometries examined. While the EVM with the differential length-scale correction term underestimates heat transfer levels, the Nusselt number predictions with the NLEVM2 and the ‘NYP’ term are in close agreements with the measured data. Comparisons with our earlier work, Iacovides and Raisee (Int J Heat Fluid Flow, 20:320–328, 1999), show that the NLEVM2 thermal predictions are of similar quality to those of a second-moment closure.  相似文献   

10.
Despite their lack of appendages, flying snakes (genus Chrysopelea) exhibit aerodynamic performance that compares favorably to other animal gliders. We wished to determine which aspects of Chrysopelea’s unique shape contributed to its aerodynamic performance by testing physical models of Chrysopelea in a wind tunnel. We varied the relative body volume, edge sharpness, and backbone protrusion of the models. Chrysopelea’s gliding performance was surprisingly robust to most shape changes; the presence of a trailing-edge lip was the most significant factor in producing high lift forces. Lift to drag ratios of 2.7–2.9 were seen at angles of attack (α) from 10–30°. Stall did not occur until α > 30° and was gradual, with lift falling off slowly as drag increased. Chrysopelea actively undulates in an S-shape when gliding, such that posterior portions of the snake’s body lie in the wake of the more anterior portions. When two Chrysopelea body segment models were tested in tandem to produce a two dimensional approximation to this situation, the downstream model exhibited an increased lift-to-drag ratio (as much as 50% increase over a solitary model) at all horizontal gaps tested (3–7 chords) when located slightly below the upstream model and at all vertical staggers tested (±2 chords) at a gap of 7 chords.  相似文献   

11.
A NACA 0015 airfoil with and without a Gurney flap was studied in a wind tunnel with Re c = 2.0 × 105 in order to examine the evolving flow structure of the wake through time-resolved PIV and to correlate this structure with time-averaged measurements of the lift coefficient. The Gurney flap, a tab of small length (1–4% of the airfoil chord) that protrudes perpendicular to the chord at the trailing edge, yields a significant and relatively constant lift increment through the linear range of the C L versus α curve. Two distinct vortex shedding modes were found to exist and interact in the wake downstream of flapped airfoils. The dominant mode resembles a Kàrmàn vortex street shedding behind an asymmetric bluff body. The second mode, which was caused by the intermittent shedding of fluid recirculating in the cavity upstream of the flap, becomes more coherent with increasing angle of attack. For a 4% Gurney flap at α = 8°, the first and second modes corresponded with Strouhal numbers based on flap height of 0.18 and 0.13. Comparison of flow around ‘filled’ and ‘open’ flap configurations suggested that the second shedding mode was responsible for a significant portion of the overall lift increment.  相似文献   

12.
Through detailed three-dimensional (3D) finite element (FE) calculations, the out-of-plane constraints Tz along embedded center-elliptical cracks in mode I elastic plates are studied. The distributions of Tz are obtained near the crack front with aspect ratios (a/c) of 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0. Tz decreases from an approximate value of Poisson ratio ν at the crack tip to zero with increasing normalized radial distances (r/a) in the normal plane of the crack front line, and increases gradually when the elliptical parameter angle ϕ changes from 0° to 90°at the same r/a. With a/c rising to 1.0, Tz is getting nearly independent of ϕ and is only related to r/a. Based on the present FE calculations for Tz, empirical formulas for Tz are obtained to describe the 3D distribution of Tz for embedded center-elliptical cracks using the least squares method in the range of 0.2≤a/c≤1.0. These Tz results together with the corresponding stress intensity factor K are well suitable for the analysis of the 3D embedded center-elliptical crack front field, and a two-parameter K-Tz principle is proposed. The project supported by the National Natural Science Foundation of China (50275073) The English text was polished by Keren Wang.  相似文献   

13.
We investigated the influence of elastic material compressibility on parameters of an expanding spherical stress wave. The material compressibility is represented by Poisson’s ratio, ν, in this paper. The stress wave is generated by a pressure produced inside a spherical cavity surrounded by the isotropic elastic material. The analytical closed form formulae determining the dynamic state of the mechanical parameters (displacement, particle velocity, strains, stresses, and material density) in the material have been derived. These formulae were obtained for surge pressure p(t) = p 0 = const inside the cavity. From analysis of these formulae, it is shown that the Poisson’s ratio substantially influences the course of material parameters in space and time. All parameters intensively decrease in space together with an increase of the Lagrangian coordinate, r. On the contrary, these parameters oscillate versus time around their static values. These oscillations decay in the course of time. We can mark out two ranges of parameter ν values in which vibrations of the parameters are “damped” at a different rate. Thus, Poisson’s ratio in the range below about 0.4 causes intense decay of parameter oscillations. On the other hand in the range 0.4 < ν < 0.5, i.e. in quasi-incompressible materials, the “damping” of parameter vibrations is very low. In the limiting case when ν = 0.5, i.e. in the incompressible material, “damping” vanishes, and the parameters harmonically oscillate around their static values. The abnormal behaviour of the material occurs in the range 0.4 < ν < 0.5. In this case, an insignificant increase of Poisson’s ratio causes a considerable increase of the parameter vibration amplitude and decrease of vibration “damping”.   相似文献   

14.
The Navier–Stokes system with damping, which is motivated by Stommel–Charney model of ocean circulation, is considered in a large elongated periodic rectangular domain with area of the order α−1, as α → 0. We obtain estimates for the dimension of the global attractor that are sharp as both α → 0 and ν → 0, where ν is the viscosity coefficient. This work was supported in part by the US Civilian Research and Development Foundation, grant no. RUM1-2654-MO-05 (A.A.I. and E.S.T.). The work of A.A.I. was supported in part by the Russian Foundation for Fundamental Research, grants no. 06-001-0096 and no. 05-01-429, and by the RAS Programme no. 1 ‘Modern problems of theoretical mathematics’. The work of E.S.T. was supported in part by the NSF, grant no. DMS-0204794, the MAOF Fellowship of the Israeli Council of Higher Education, and by the BSF, grant no. 200423.  相似文献   

15.
Summary We study the two-dimensional instantaneous Stokes flow driven by gravity in a viscous triangular prism supported by a horizontal rigid substrate and a vertical wall. The oblique side of the prism, inclined at an angle α with respect to the substrate, is a fluid-air interface, where the stresses are zero and surface tension is neglected. We develop the stream function ψ in polar coordinates (r,θ) centered at the vertex of α and split it into an inhomogeneous part, which accounts for gravity effects, and a homogeneous part, which is expressed as a series expansion. The inhomogeneous part and the first term of the expansion may be envisioned, respectively, as self-similar solutions of the first kind and of the second kind for r→0, each one holding in complementary α domains with a crossover at α c =21.47, which we study in some detail. The coefficients of the series are calculated by truncating the expansion and using the method of direct collocation with a suitable set of points at the wall. The solution strictly holds for t=0, because later the free surface ceases to be a plane; nevertheless, it provides a good approximation for the early time evolution of the fluid profile, as shown by the comparison with numerical simulations. For 0<α<45, the vertex angle remains constant and the edge remains strictly at rest; the transition at α c manifests itself through a change in the rate of growth of the curvature. The time at which the edge starts to move (waiting time) cannot be calculated since the instantaneous solution ceases to be valid. For α>45, the instantaneous local solution indicates that the surface near the vertex is launched against the substrate so that the edge starts to move immediately with a power law dependence on time t. However, due to the high value of the exponent, the vertex may seem to be at rest for some finite time even in this case. Received 29 August 1997; accepted for publication 21 January 1998  相似文献   

16.
The three techniques of s-to-z transform, power series expansion (PSE) and signal modelling are combined to develop a new procedure for efficiently computing the fractional order derivatives and integrals of discrete-time signals. A mapping function between the s-plane and the z-plane is first chosen, and then a PSE of this mapping function raised to fractional order is performed to get the desired infinite impulse response of the ideal digital fractional operator. Finally, the desired impulse response is modelled as the impulse response of a linear invariant system whose rational transfer function is determined using deterministic signal modelling techniques. Three non-iterative techniques, namely Padé, Prony and Shanks’ methods have been considered in this paper. Using Al-Alaoui’s rule as s-to-z transform, computation examples show that both Prony and Shanks’ method can achieve more accurate fractional differentiation and integration than Padé method which is equivalent to continued fraction expansion technique.  相似文献   

17.
A self-similar solution of the three-dimensional (3d) incompressible Euler equations is defined byu(x,t) =U(y)/t*-t) α, y = x/(t* ~ t)β,α,β> 0, whereU(y) satisfiesζU + βy. ΔU + U. VU + VP = 0,divU = 0. For α = β = 1/2, which is the limiting case of Leray’s self-similar Navier—Stokes equations, we prove the existence of(U,P) ε H3(Ω,R3 X R) in a smooth bounded domain Ω, with the inflow boundary data of non-zero vorticity. This implies the possibility that solutions of the Euler equations blow up at a timet = t*, t* < +∞.  相似文献   

18.
In this work, positive solutions to a doubly nonlinear parabolic equation with a nonlinear boundary condition are considered. We study the problem where 0 < m, r, α < ∞ are parameters. It is known that for some values of the parameters there are solutions that blow up in finite time. We determine in terms of α ,m, r the blow-up sets for these solutions. We prove that single point blow-up occurs if max{m, r} < α, global blow-up appears for the range of parameters 0 < m < α < r and regional blow-up takes place if 0 < m < α = r and . In this case the blow-up set consists of the interval .  相似文献   

19.
    
Poincaré type integral inequality plays an important role in the study of nonlinear stability (in the sense of Arnold’s second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady’s model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite. To fill this gap, the enhanced Poincaré inequality was obtained by considering the additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady’s model in the periodic channel, the linear stable implies the nonlinear stable. Foundation item: the Municipal Key Subject Program of Shanghai of China Biography: LIU Yong-ming, Professor, E-mail: ymliu@math.ecnu.edu.cn  相似文献   

20.
The paper gives explicit expressions of the elastic T-stress components T I, T II, and T III for an elliptic crack in an unbounded body under uniform pressure and bending and expressions of all the T-stress components for parabolic and tunnel cracks under uniform loading. These formulas are derived by analyzing the asymptotic behavior of the stress components near the crack front using special harmonic functions. The dependence of the T-stresses on Poisson’s ratio, semiaxes and parametric angle of the elliptic crack is studied. The expressions of T I, T II, and T III for a penny-shaped crack under arbitrary uniform pressure and bending follow as a special case from the respective expressions for an elliptic crack __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 8, pp. 57–70, August 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号