首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkylation of nanotube salts prepared using either lithium, sodium, or potassium in liquid ammonia yields sidewall-functionalized nanotubes that are soluble in organic solvents. Atomic force microscopy and transmission electron microscopy studies of dodecylated SWNTs prepared from HiPco nanotubes and 1-iodododecane show that extensive debundling results from intercalation of the alkali metal into the SWNT ropes. TGA-FTIR analyses of samples prepared from the different metals revealed radically different thermal behavior during detachment of the dodecyl groups. The SWNTs prepared using lithium can be converted into the pristine SWNTs at 180-330 degrees C, whereas the dodecylated SWNTs prepared using sodium require a much higher temperature (380-530 degrees C) for dealkylation. SWNTs prepared using potassium behave differently, leading to detachment of the alkyl groups over the temperature range 180-500 degrees C. These differences can be observed by analysis of the solid-state 13C NMR spectra of the dodecylated SWNTs that have been prepared using the different alkali metals and may indicate differences in the relative amounts of 1,2- and 1,4-addition of the alkyl groups.  相似文献   

2.
Hu H 《色谱》2012,30(1):99-102
建立了氟尼辛葡甲胺原料药中乙酸乙酯、甲醇、异丙醇、乙醇和乙腈有机溶剂残留量的顶空气相色谱分析方法。以HP-FFAP色谱柱(30 m×0.32 mm×1.0 μm)为分离柱,火焰离子化检测器检测,外标法定量,并考察了顶空平衡温度、平衡时间等对残留有机溶剂测定的影响。实验结果表明,在顶空平衡温度为90 ℃、平衡时间为30 min条件下获得较好的定量结果。乙酸乙酯、甲醇、异丙醇、乙醇和乙腈的线性范围分别为0.40~7.93 mg/L (r=0.9998)、7.32~146.48 mg/L (r=0.9996)、4.53~90.61 mg/L (r=0.9999)、3.62~72.32 mg/L (r=0.9998)和2.31~46.24 mg/L (r=0.9996);平均回收率范围为95.96%~100.31%,精密度(以相对标准偏差计,n=6)为1.97%~3.28%;检出限分别为0.08、0.9、0.2、0.4和0.3 mg/L。利用该方法对实际样品氟尼辛葡甲胺原料药中有机溶剂残留量进行了检测。结果表明,该样品中含有异丙醇和乙醇,其含量分别为177.44 μg/g与69.32 μg/g。本方法快速、灵敏、准确,适用于氟尼辛葡甲胺原料药中残留溶剂的检测。  相似文献   

3.
Covalent sidewall functionalization of single wall carbon nanotubes   总被引:6,自引:0,他引:6  
Alkyllithium reagents may be used to attach alkyl groups to the sidewalls of fluoro nanotubes. Thermal gravimetric analysis combined with UV-vis-Nir spectroscopy has been used to provide a quantitative measure of the degree of functionalization. SWNTs prepared using the HiPco process exhibit a higher degree of alkylation than SWNTs from the laser-oven method, indicating that the smaller diameter fluoro tubes are alkylated more readily. The spectral signature of the pristine SWNTs can be regenerated when the alkylated SWNTs are heated in Ar at 500 degrees C, demonstrating that dealkylation occurs at this temperature. TGA-MS analysis using a sample of n-butylated h-SWNTs showed that 1-butene and n-butane are formed during thermolysis.  相似文献   

4.
The reactions of single-walled carbon nanotubes (SWNTs) with succinic or glutaric acid acyl peroxides in o-dichlorobenzene at 80-90 degrees C resulted in the addition of 2-carboxyethyl or 3-carboxypropyl groups, respectively, to the sidewalls of the SWNT. These acid-functionalized SWNTs were converted to acid chlorides by derivatization with SOCl(2) and then to amides with terminal diamines such as ethylenediamine, 4,4'-methylenebis(cyclohexylamine), and diethyltoluenediamine. The acid-functionalized SWNTs and the amide derivatives were characterized by a set of materials characterization methods including attenuated total reflectance (ATR) FTIR, Raman and solid state (13)C NMR spectroscopy, transmission electron microscopy (TEM), and thermal gravimetry-mass spectrometry (TG-MS). The degree of SWNT sidewall functionalization with the acid-terminated groups was estimated as 1 in 24 carbons on the basis of TG-MS data. In comparison with the pristine SWNTs, the acid-functionalized SWNTs show an improved solubility in polar solvents, for example, alcohols and water, which enables their processing for incorporation into polymer composite structures as well as for a variety of biomedical applications.  相似文献   

5.
An in situ composite synthesis technique has been developed by grafting polystyrene chains onto single-wall carbon nanotubes (SWNTs) via a single-step debundling/polymerization scheme. The method, based on established anionic polymerization techniques, eliminates the need for nanotube pretreatment prior to functionalization and allows attachment of polymer molecules to pristine tubes without altering their original structure. The composites obtained contain well-dispersed SWNTs with good nanotube-matrix interaction. The scheme is quite general in nature and can be applied to different polymer systems. The simplicity and scalability of the process can lead to the realization of superior nanotube-based polymer composites for applications as advanced multifunctional structural materials.  相似文献   

6.
A group of ferrocene-containing poly(phenylacetylene)s (PPAs) with different alkyl spacers were synthesized by using organorhodium complexes [Rh(diene)Cl](2) and Rh (+)(nbd)[C(6)H(5)B (-)(C(6)H(5))(3)] as catalysts. With the aid of pi-pi interactions between the walls of carbon nanotubes (CNTs) and the PPA skeleton together with the ferrocene pendants, the polymer (P 1, P2(5) and P2(10)) chains effectively wrapped round the shells of both single-walled carbon nanotubes (SWNTs) and multiwalled carbon nanotubes (MWNTs). The "additive effect" of the PPA skeleton and the ferrocene pendants in dispersing the SWNTs and MWNTs resulted in the generation of highly soluble hybrids. The solubilities of P 1-functionalized SWNTs and MWNTs in tetrahydrofuran (THF) are up to 633 mg/L and 967 mg/L, respectively. They are much higher than the solubilities of M 1-modified SWNTs and MWNTs, which are only 167 mg/L and 133 mg/L in THF. The results indicate the existence of a powerful polymer effect on dispersing CNTs. The high solubilities of the hybrids in organic solvents allowed us to fabricate high-quality and large-area films. Meanwhile, the desirable loading of ferrocene-containing PPAs onto the CNTs offered polymer/CNTs hybrids with multiple redox centers and ferrocene-featured electrochemical properties. The P 1/MWNT hybrid exhibits evident optical-limiting properties. At high incident laser fluence, the optical-limiting power of P 1/MWNT is higher than that of C(60), a well-known optical limiter. Thermal analyses indicate that the decomposition temperatures ( T(d), the temperature at which a sample loses its 5% weight) for P1 and P1/MWNT are 342 and 346 degrees C, respectively, much higher than that for PPA (225 degrees C). Thus the attachment of a ferrocene pendant to a PPA backbone, followed by hybridization with CNTs, improved the thermal stability. Upon pyrolysis, both the polymer and the polymer/CNTs hybrid gave rise to superparamagnetic ceramics; the saturation magnetizations ( M(s)) of the ceramics derived from P1 and P1/MWNT are 29.9 and 26.9 emu/g, respectively. The latter datum is in the list of the best results reported for the magnetic nanocomposites obtained by the attachment of magnetic nanoparticles onto CNTs.  相似文献   

7.
Whereas the chemistry of fullerenes is well-established, the chemistry of single-walled carbon nanotubes (SWNTs) is a relatively unexplored field of research. Investigations into the bonding of moieties onto SWNTs are important because they provide fundamental structural insight into how nanoscale interactions occur. Hence, understanding SWNT chemistry becomes critical to rational, predictive manipulation of their properties. Among the strategies discussed include molecular metal complexation with SWNTs to control site-selective chemistry in these systems. In particular, work has been performed with Vaska's and Wilkinson's complexes to create functionalized adducts. Functionalization should offer a relatively simple means of tube solubilization and bundle exfoliation, and also allows for tubes to be utilized as recoverable catalyst supports. Solubilization of oxidized SWNTs has also been achieved through derivatization by using a functionalized organic crown ether. The resultant adduct yielded concentrations of dissolved nanotubes on the order of 1 g L(-1) in water and at elevated concentrations in a range of organic solvents, traditionally poor for SWNT manipulation. To further demonstrate chemical processability of SWNTs, we have subjected them to ozonolysis, followed by treatment with various independent reagents, to rationally generate a higher proportion of oxygenated functional groups on the nanotube surface. This protocol has been found to purify nanotubes. More importantly, the reaction sequence has been found to ozonize the sidewalls of these nanotubes. Finally, SWNTs have also been chemically modified with quantum dots and oxide nanocrystals. A composite heterostructure consisting of nanotubes joined to nanocrystals offers a unique opportunity to obtain desired physical, electronic, and chemical properties by adjusting synthetic conditions to tailor the size and structure of the individual sub-components, with implications for self-assembly.  相似文献   

8.
Ammonia adsorption on single-walled carbon nanotubes (SWNTs) was studied by means of infrared spectroscopy at both cryogenic (approximately 94 K) and room (approximately 300 K) temperatures. At 94 K, vacuum-annealed SWNTs showed no detectable ammonia uptake. However, the ammonia adsorption was found to be sensitive to the functionalities and defects on the nanotube surfaces. NH3 adsorption was detected on HNO3-treated nanotubes, characterized by significant functionalities and defects, prior to vacuum annealing. NH3 desorbed from those nanotubes above 140 K, indicating a weak adsorbate-nanotube interaction (approximately 30 kJ/mol). Exposure of annealed samples to ambient air, which possibly regenerated functionalities and defects on nanotube surfaces, restored partially the ammonia uptake capacity. No ammonia adsorption on SWNTs was observed by infrared spectroscopy at room temperature with up to 80 Torr dosing pressure. This work suggests the influence of functionalities and/or defect densities on the sensitivity of SWNT chemical gas sensors. Our theoretical studies on NH3 adsorption on pristine and defective tubes, as well as oxidized tubes, corroborate these findings.  相似文献   

9.
针尖化学方法研究单壁碳纳米管末端羧基的解离性质   总被引:2,自引:0,他引:2  
针尖化学利用化学手段对扫描探针显微镜 ( SPM)的针尖进行功能化修饰 ,将其作为化学反应的“探针”用于研究表面的局域化学反应性质、跟踪表面发生的化学反应过程等 [1] .用针尖化学技术来研究自组装膜 ( SAMs)表面酸碱基团的局域解离性质 ,称之为化学力滴定 [2~ 8] .利用表面缩合方法将单壁碳纳米管短管组装到 AFM针尖上 ,通过测定针尖上碳纳米管的末端基团与羟基自组装膜表面之间的粘滞力 ,研究碳纳米管末端羧基的解离性质 ,可得到碳纳米管结构与化学性质的信息 .1 实验部分1 .1 碳纳米管针尖和羟基末端自组装膜的制备 基底 [Si( …  相似文献   

10.
Single-walled carbon nanotubes have been functionalized and the specific surface areas of the functionalized nanotubes measured. Contrary to expectations, functionalization leads to a decrease in specific surface area compared to that of the unfunctionalized nanotubes. Treatment with a concentrated 1:1 nitric/sulfuric acid mixture followed by high-temperature baking at 1000 degrees C was found to increase the specific surface area of the nanotubes. For the unfunctionalized SWNTs, this treatment increases the specific surface area (SSA) by 20%. In the case of SWNTs functionalized by n-butyl groups the increase in the SSA was nearly 2-fold with the value increasing from 410 (drying at 110 degrees C) to 770 m2/gm (acid and bake treatment followed by drying at 110 degrees C). For the ozonized SWNTs, the SSA increases more than 3-fold from 381 (drying at 110 degrees C) to 1068 m2/gm (acid and bake treatment followed by drying at 110 degrees C). SEM images indicate that the nanotubes rebundle in the solid state with an average bundle size of 10-30 nm. AFM studies show that the ozonized tubes have been cut to short bundles after ozonolysis. Hydrogen uptake studies carried out on the baked ozonized tubes led to a 3 wt % hydrogen uptake at 77 K and 30 bar.  相似文献   

11.
We report a further advance in the bulk purification of nitric acid-treated single-walled carbon nanotubes (SWNTs) by use of high-speed centrifugation. We have already shown that low-speed centrifugation is effective in removing amorphous carbon (AC). In these earlier experiments, the AC preferentially suspends in aqueous dispersions on low-speed centrifugation (2000g), leaving the SWNTs in the sediment. In a surprising reversal, we now show that high-speed centrifugation (20000g) of well-dispersed preparations is effective in sedimenting carbon nanoparticles (CNP), while leaving the SWNTs suspended in aqueous media. Taken together, these two techniques allow the bulk scale (10 g) purification of SWNTs by efficiently separating the two main contaminants, in an industrially viable process. We show that the mechanism of these separations is based on the differential charging (zeta-potential) of the AC, CNPs, and SWNTs that comes about during the chemical processing. Due to their more robust structure, nitric acid oxidation leaves the CNPs with a surface charge density lower than that of the SWNTs, and thus the CNPs do not form stable dispersions in aqueous media during high-speed centrifugation. The efficiency of the process was confirmed by the high purification recovery factor (PRF = 90%), which is a measure of the fractional quantity of the product recovered after the purification. We demonstrate that the purity of SWNTs significantly affects their mechanical and electrical properties.  相似文献   

12.
Discrete dispersion of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Single-walled carbon nanotubes (SWNTs) have been effectively wetted and dispersed in saturated sodium hydroxide (NaOH) alcohol-water solutions with little surface damage or shortening of the tubes; the treated material was dissolvable as individual tubes in many common organic solvents.  相似文献   

13.
A silicon chip device with two types of integrated platinum thin film resistors was applied for microcaloric measurements. It was shown that the device is capable of fast characterization of liquid evaporation behaviour and allows the determination of evaporation enthalpies for pure liquids and mixtures. The applicability was demonstrated for a wide range of solvents from nonpolar aliphatic solvents over polar organics to protic solvents (e.g. iso-octane, toluene, acetone, ethanol, methanol and water). The sample volumes were in the range of about 2-5 μL. The determination of transient times, in case of constant power mode, or the power integral over time was used for the fast estimation of binary liquid mixtures. Thermo-resistive measurements of 5 μL droplets of solvent mixtures like methanol/iso-propanol, ethanol/water, iso-octane/iso-propanol and iso-octane/1,4-dioxane showed significant changes in temperature characteristics and evaporation enthalpies in dependence on composition. The applied heating power was about 1 W, which corresponds to measurement times between a few seconds and a minute.  相似文献   

14.
Wet chemical methods involving ultrasound and amide solvents were used to purify and separate large bundles of single-walled carbon nanotubes (SWNTs) into individual nanotubes that could then be transported to silicon or mica substrates. The SWNTs studied were produced by the arc-discharge process. Dry oxidation was used in an initial step to remove amorphous carbon. Subsequently, two acid purification schemes were investigated (HCl- and HNO(3)-reflux) to remove the metal growth catalyst (Ni-Y). Finally, ultrasonic dispersion of isolated tubes into either N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP) was carried out. Raman scattering, atomic force microscopy (AFM), and electron microscopy were used to study the evolution of the products. Raman scattering was used to probe possible wall damage during the chemical processing. We found that both HCl and HNO(3) could be used to successfully remove the Ni-Y below approximately 1 wt %. However, the HNO(3)-reflux produced significant wall damage (that could be reversed by vacuum annealing at 1000 degrees C). In the dispersion step, both amide solvents (DMF and NMP) produced a high degree of isolated tubes in the final product, and no damage during this dispersion step was observed. HNO(3)-refluxed tubes were found to disperse the best into the amide solvents, perhaps because of significant wall functionalization. AFM was used to study the filament diameter and length distributions in the final product, and interesting differences in these distributions were observed, depending on the chemical processing route.  相似文献   

15.
It was shown that an automated analyzer with solid-electrolyte sensor cells can be used to determine difficult volatile organic impurities (technical oils, gasoline, and kerosene) in organic solvents (alcohols, acetone, and turpentine) by their two-stage oxidation with atmospheric oxygen at 100 °C (evaporation of a light fraction) and at a temperature of 900 °C and higher (burning impurities). Optimum conditions are found for the rapid determination of trace amounts of MS-20 oil in washing solvents (ethanol, benzene): time of determination, 5 min/sample; aliquot portion, 10 μL; linearity range of the calibration graph, from 20 to 100 mg/L of organic impurity; detection limit, 2.5 mg/L; RSD ≥ 8%. The results of determining the concentrations of gasolines of different grades and other organic mixtures for identifying substance grades are discussed. The novelty and advantages of the developed method consist in the rapid and quantitative determination of the octane number and other parameters of hydrocarbon fuels without preliminary sample preparation and also in the possibility of analyzing liquid samples of any other origin without resorting to the chemical methods of analysis. The ecological safety of the method is also important.  相似文献   

16.
氯过氧化物酶修饰电极对一氯二甲酮的催化氯化   总被引:2,自引:0,他引:2  
通过将氯过氧化物酶溶液(Chloroperoxidase, CPO)与Nafion分散的单壁碳纳米管分散液混合后直接滴涂到玻碳电极表面制得修饰电极. 这个固定了氯过氧化物酶的碳纳米管修饰玻碳电极, 在pH=5.0的磷酸缓冲溶液中测得的循环伏安曲线上有一对准可逆的氧化还原电流峰, 经过与裸电极和没有固定氯过氧化物酶的碳纳米管修饰电极上测得的循环伏安行为对比后确认, 碳纳米管对氯过氧化物酶与电极之间的电子传递反应具有很好的促进作用. 利用该修饰电极能催化一氯二甲酮氯化为二氯二甲酮, 无需添加过氧化氢作为反应启动剂, 紫外光谱的测试结果表明, 每摩尔氯过氧化物酶可催化氯化4.0×105 mol 的一氯二甲酮, 表现出很高的催化效率.  相似文献   

17.
单壁碳纳米管氧化过程的银纳米粒子跟踪   总被引:2,自引:0,他引:2  
基于银与羧基之间的相互作用,利用银纳米粒子跟踪稀硝酸氧化单壁碳纳米管的过程.通过比较银纳米粒子对稀硝酸氧化不同时间所得单壁碳纳米管的跟踪情况,推测了该氧化可能是沿着碳纳米管的缺陷边缘处对其进行缓慢腐蚀的过程.  相似文献   

18.
As-synthesized single-walled carbon nanotubes (SWNTs) are bundled mixtures of different species. The current challenge in the field of carbon nanotube research lies in the processing and separation of SWNTs, which first require efficient dispersion of individual SWNTs in solvents. We report DNA-mimicking polysoap surfactants that disperse SWNTs in aqueous solutions more effectively than DNA. The polysoaps are synthesized by functionalizing the side chain of poly(styrene-alt-maleic acid) with aminopyrene. The synthetic nature of the polysoap opens a new approach to further optimization of not only SWNT dispersion efficiency but also multi-functional SWNT dispersing surfactant.  相似文献   

19.
We report the efficient aqueous dispersion of pristine HiPco single-walled carbon nanotubes (SWNTs) with ionic liquid (IL)-based surfactants 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), the thiolation of nanotube sidewalls with 2, and the controlled self-assembly of positively charged SWNT-1,2 composites on gold. Optical absorption spectra and resonance Raman (RR) data of obtained aqueous SWNT-1,2 dispersions are consistent with debundled and noncovalently functionalized nanotubes whose electronic properties have not been disturbed. Additionally, the dispersion of pristine nanotube material with surfactants 1 and 2 leads to a high degree of purification from carbonaceous particles. The chiralities of the 14 smallest semiconducting HiPco SWNTs in resonance with Raman excitation at 1064 nm (1.165 eV) were determined in SWNT-2 aqueous dispersion using UV-vis-NIR and RR spectra. X-ray photoelectron spectroscopy (XPS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopy of SWNT-2 submonolayers on gold verified the encapsulation of individualized SWNTs with IL surfactants, the cleavage of S-S disulfide bonds formed in aqueous SWNT-2 suspensions, and the direct chemisorption of the SWNT-2 composite on bare gold via the Au-S bond. Aqueous dispersions of SWNTs with IL-based surfactants add biofunctionality to carbon nanotubes by imparting the positive surface charge necessary for interactions with cell membranes. Our technique, which purifies pristine nanotube material and produces water-soluble, positively charged nanotubes with pendent surface-active thiol groups, may also be translated to other carbon nanotubes and carbon nanostructures. Self-assembled, positively charged submonolayers of SWNTs can be further used for applications in cell biology and sensor technology.  相似文献   

20.
This study describes a facile but effective route to synthesis of electroactive polyaniline (PANI) in the neutral and alkaline media simply with pristine single-walled carbon nanotubes (SWNTs) as the dopant. Cyclic voltammetry (CV) studies reveal that the SWNT/PANI nanocomposite processes a good electrochemical activity in the neutral and alkaline media. Control experiments with PANI mixed with heat-treated SWNTs imply that the electrochemical properties of the SWNT/PANI nanocomposite in the neutral and alkaline media do not result from the presence of carboxylic groups at SWNTs themselves, and in turn show that the pristine SWNTs can be potentially used as a new and effective dopant to preserve the electrochemical property of PANI in the neutral and alkaline media. This property of the SWNT/PANI nanocomposite is reasonably envisaged to be promising for electrochemical investigations and electroanalytical applications, especially for the development of electrochemical sensors, biosensors and biofuel cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号