首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Relationships between dietary status and recent migration were examined by delta(13)C, delta(15)N and delta(34)S analysis of hair samples from 43 modern humans living in a rural community in SW England. The isotopic content of 38 'local' hair samples was compared with that of five recently arrived individuals (from Canada, Chile, Germany and the USA). Hair samples from domestic animals (i.e. mainly cats, dogs, cows and horses) were analysed to examine the difference in delta(13)C, delta(15)N and delta(34)S values between herbivores and carnivores. Generally, modern human hair data from the triple stable isotope (delta(13)C, delta(15)N and delta(34)S) provided enough information to confirm the dietary status and origin of the individual subjects. The dietary intake was generally reflected in the animal hair delta(15)N and delta(13)C values, i.e. highest in the carnivores (cats). However, a non-local origin of food sources given to domesticated omnivores (i.e. dogs) was suggested by their hair delta(34)S values.  相似文献   

2.
Despite a rapidly growing literature on analytical methods and field applications of O isotope-ratio measurements of NO(3)(-) in environmental studies, there is evidence that the reported data may not be comparable because reference materials with widely varying delta(18)O values have not been readily available. To address this problem, we prepared large quantities of two nitrate salts with contrasting O isotopic compositions for distribution as reference materials for O isotope-ratio measurements: USGS34 (KNO(3)) with low delta(18)O and USGS35 (NaNO(3)) with high delta(18)O and 'mass-independent' delta(17)O. The procedure used to produce USGS34 involved equilibration of HNO(3) with (18)O-depleted meteoric water. Nitric acid equilibration is proposed as a simple method for producing laboratory NO(3)(-) reference materials with a range of delta(18)O values and normal (mass-dependent) (18)O:(17)O:(16)O variation. Preliminary data indicate that the equilibrium O isotope-fractionation factor (alpha) between [NO(3)(-)] and H(2)O decreases with increasing temperature from 1.0215 at 22 degrees C to 1.0131 at 100 degrees C. USGS35 was purified from the nitrate ore deposits of the Atacama Desert in Chile and has a high (17)O:(18)O ratio owing to its atmospheric origin. These new reference materials, combined with previously distributed NO(3) (-) isotopic reference materials IAEA-N3 (=IAEA-NO-3) and USGS32, can be used to calibrate local laboratory reference materials for determining offset values, scale factors, and mass-independent effects on N and O isotope-ratio measurements in a wide variety of environmental NO(3)(-) samples. Preliminary analyses yield the following results (normalized with respect to VSMOW and SLAP, with reproducibilities of +/-0.2-0.3 per thousand, 1sigma): IAEA-N3 has delta(18)O = +25.6 per thousand and delta(17)O = +13.2 per thousand; USGS32 has delta(18)O = +25.7 per thousand; USGS34 has delta(18)O = -27.9 per thousand and delta(17)O = -14.8 per thousand; and USGS35 has delta(18)O = +57.5 per thousand and delta(17)O = +51.5 per thousand.  相似文献   

3.
Stable isotope analysis of organic elements such as carbon and nitrogen has been employed as a powerful tool for provenance determination of food materials, because isotopic compositions of the materials reflect many factors in natural environment. In this study, we examined carbon, nitrogen, and oxygen isotope signatures of beef from Australia, Japan, and USA, in order to confirm the method as a potential tool for verifying geographical origin of beef commercially distributed in Japan. Defatted dry matter of beef from USA was characterized by higher carbon isotopic composition (-13.6 per thousand to -11.1 per thousand) than that from Japan (-19.6 per thousand to -17.0 per thousand) and Australia (-23.6 per thousand to -18.7 per thousand). That from Australia was characterized by higher oxygen isotopic composition (+15.0 per thousand to +19.4 per thousand) than that from Japan (+7.3 per thousand to +13.6 per thousand) and USA (+9.5 per thousand to +11.7 per thousand). The oxygen isotopic composition in Japanese beef showed a positive correlation with the isotopic composition of cattle drinking water, the difference in which is clearly latitude dependent. These results suggest that a comparison of carbon, nitrogen, and oxygen isotopic compositions is applicable as a potential tool to discriminate the provenance of beef not only between different countries (i.e. Australia, Japan, and USA) but also among different regions within Japan.  相似文献   

4.
The reconstruction of ancient diets using isotopic measurements of bone collagen, and other tissues, which survive in archaeological contexts, relies on known isotopic relationships between diet and body tissues. Examination of these relationships often requires the study of modern human and animal subjects. While hair keratin can act as a useful proxy for bone collagen in isotopic studies on living humans, where it is inappropriate to sample tissues such as collagen, it can, in addition, act as a chronological indicator of dietary change. This study investigates hair keratin delta13C values from current residents of the UK and the USA. Residents in the USA showed a clear bulk hair delta13C enrichment of approximately 3 per thousand over UK individuals, attributed to an elevated C4 dietary input from maize fed to livestock in North America. The keratin delta13C of subjects who moved between the UK and USA showed a pronounced change after relocation, taking approximately 4 months to reach isotopic equilibrium. To investigate these differences further, we measured delta13C values of dispensable and indispensable amino acids as a group, and selected individual amino acids. As a group, enrichment of dispensable amino acids compared with indispensable amino acids occurred in samples from both continents, averaging 7.2 per thousand in the UK and 7.9 per thousand in the USA. Dispensable and indispensable amino acids, as well as all individual amino acids measured, were enriched in samples from the USA compared with those from the UK.  相似文献   

5.
Continuous-flow isotope ratio mass spectrometry (CF-IRMS) was used to compare (2)H isotopic composition at natural abundance level of human scalp hair and fingernail samples collected from subjects worldwide with interpolated delta(2)H precipitation values at corresponding locations. The results showed a strong correlation between delta(2)H values of meteoric water and hair (r(2) = 0.86), while the corresponding correlation for nails was not as strong (r(2) = 0.6). Offsets of -180 per thousand and -127 per thousand were observed when calculating solutions of the linear regression analyses for delta(2)H vs. delta(18)O correlation plots of hair and nail samples, respectively. Compared with the +10 per thousand offset of the global meteoric water line equation these findings suggested that delta(18)O data from hair and nail would be of limited diagnostic value. The results of this pilot study provide for the first time tentative correlations of (2)H isotopic composition of human hair and nails with local water. Linear regression analyses for measured delta(2)H values of human hair and nails vs. water yielded delta(2)H(hair) = 0.49 x delta(2)H(water) - 35 and delta(2)H(nails) = 0.38 x delta(2)H(water) - 49, respectively. The results suggest that (2)H isotopic analysis of hair and nail samples can be used to provide information regarding an individual's recent geographical life history and, hence, location. The benefit of this technique is to aid identification of victims of violent crime and mass disasters in circumstances where traditional methods such as DNA and fingerprinting cannot be brought to bear (or at least not immediately).  相似文献   

6.
We determined grain-scale heterogeneities (from 6 to 88 microg) in the stable carbon and oxygen isotopic compositions (delta(13)C and delta(18)O) of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8) using a continuous-flow isotope ratio mass spectrometry (CF-IRMS) system that realizes a simultaneous determination of the delta(13)C and the delta(18)O values with standard deviations (S.D.) of less than 0.05 per thousand for CO(2) gas. Based on the S.D. of the delta(13)C and delta(18)O values determined for CO(2) gases evolved from the different grains of the same calcite material, we found that NBS 19, IAEA-CO-1, and IEAE-CO-8 were homogeneous for delta(13)C (less than 0.10 per thousand S.D.), and that only NBS 19 was homogeneous for delta(18)O (less than 0.14 per thousand S.D.). On the level of single grains, we found that both IAEA-CO-1 and IAEA-CO-8 were heterogeneous for delta(18)O (1.46 per thousand and 0.76 per thousand S.D., respectively), and that NBS 18 was heterogeneous for both delta(13)C and delta(18)O (0.34 per thousand and 0.54 per thousand S.D., respectively). Closer inspection of NBS 18 grains revealed that the highly deviated isotopic compositions were limited to the colored grains. By excluding such colored grains, we could also obtain the homogeneous delta(13)C and delta(18)O values (less than 0.18 per thousand and less than 0.16 per thousand S.D., respectively) for NBS 18. We conclude that NBS 19, IAEA-CO-1, or pure grains in NBS 18 are suitable to be used as the standard reference material for delta(13)C, and that either NBS 19 or pure grains in NBS 18 are suitable to be used as the reference material for delta(18)O during the grain-scale isotopic analyses of calcite.  相似文献   

7.
The stable oxygen and hydrogen isotope compositions of organic samples are increasingly being used to investigate patterns of animal migration. Relatively few studies have applied these techniques to modern humans, despite a variety of potential forensic applications. We analyzed drinking water and food at two geographic locations, East Greenbush, New York (USA) and Fairbanks, Alaska (USA), with different delta(18)O and deltaD values for precipitation and tap water. Foods varied widely in measured delta(18)O and deltaD values, but not systematically by purchase location. We measured delta(18)O and deltaD values of scalp hair from five residents at each location. We used a mixing model to establish the proportion of oxygen and hydrogen in head hair derived from drinking water ( approximately 27% and approximately 36%, respectively). Finally, we analyzed the delta(18)O and deltaD values of facial hair and urine from a subject who traveled from Fairbanks to East Greenbush, on to the UK and back to Fairbanks. Urine delta(18)O and deltaD values responded immediately and strongly to travel-related change in drinking water, and were well described by a single-pool turnover model. Beard hair delta(18)O values tracked changes in urine delta(18)O closely, and oscillated between the values for the resident populations in both locations. In contrast, beard hair deltaD values did not track changes in urine deltaD as well, and retained a signature of the traveler's permanent residence. Our findings show that the delta(18)O and deltaD values of urine and facial hair (specifically delta(18)O) can provide a record of the geographical movements of humans.  相似文献   

8.
We developed a rapid, sensitive, and automated analytical system to determine the delta15N, delta18O, and Delta17O values of nitrous oxide (N2O) simultaneously in nanomolar quantities for a single batch of samples by continuous-flow isotope-ratio mass spectrometry (CF-IRMS) without any cumbersome and time-consuming pretreatments. The analytical system consisted of a vacuum line to extract and purify N2O, a gas chromatograph for further purification of N2O, an optional thermal furnace to decompose N2O to O2, and a CF-IRMS system. We also used pneumatic valves and pneumatic actuators in the system so that we could operate it automatically with timing software on a personal computer. The analytical precision was better than 0.12 per thousand for delta15N with >4 nmol N2O injections, 0.25 per thousand for delta18O with >4 nmol N2O injections, and 0.20 per thousand for Delta17O with >20 nmol N2O injections for a single measurement. We were also easily able to improve the precision (standard errors) to better than 0.05 per thousand for delta15N, 0.10 per thousand for delta18O, and 0.10 per thousand for Delta17O through multiple analyses with more than four repetitions with 190 nmol samples using the automated analytical system. Using the system, the delta15N, delta18O, and Delta17O values of N2O can be quantified not only for atmospheric samples, but also for other gas or liquid samples with low N2O content, such as soil gas or natural water. Here, we showed the first ever Delta17O measurements of soil N2O.  相似文献   

9.
On-line determination of the oxygen isotopic composition (delta(18)O value) in organic and inorganic samples is commonly performed using a thermal conversion elemental analyzer (TC-EA) linked to a continuous flow isotope ratio mass spectrometry (IRMS) system. Accurate delta(18)O analysis of N-containing compounds (like nitrates) by TC-EA-IRMS may be complicated because of interference of the N(2) peak on the m/z 30 signal of the CO peak. In this study we evaluated the effectiveness of two methods to overcome this interference which do not require any hardware modifications of standard TC-EA-IRMS systems. These methods were (1) reducing the amount of N(2) introduced into the ion source through He dilution of the N(2) peak and (2) an improved background correction on the CO m/z 30 sample peak integration.Our results show that He dilution is as effective as diverting the N(2) peak in order to eliminate this interference. We conclude that the He-dilution technique is a viable method for the delta(18)O analysis of nitrates and other N-containing samples (which are not routinely measured using He dilution) using TC-EA-IRMS, since it can easily be programmed in the standard software of IRMS systems. With the He-dilution technique delta(18)O values of the nitrate isotope standards USGS34, IAEA-N3 and USGS35 were measured using the shortest possible traceability chain to the VSMOW-SLAP scale, and the results were -28.1 +/- 0.1 per thousand, +25.5 +/- 0.1 per thousand and +57.5 +/- 0.2 per thousand, respectively. An improved background correction was also an effective method, but required manual correction of the raw data.  相似文献   

10.
The delta(13)C(VPDB), delta(2)H(VSMOW) and delta(18)O(VSMOW) values of caffeine isolated from Arabica green coffee beans of different geographical origin have been determined by isotope ratio mass spectrometry (IRMS) using elemental analysis (EA) in the "combustion" (C) and "pyrolysis" (P) modes (EA-C/P-IRMS). In total, 45 coffee samples (20 from Central and South America, 16 from Africa, six from Indonesia, and three from Jamaica and Hawaii) were analysed, as well as three reference samples of synthetic caffeine. Validation was performed by excluding isotope discrimination in the course of sample preparation and determining linear dynamic ranges for EA-P-IRMS measurements. The values for caffeine from green coffee ranged from -25.1 to - 29.9 per thousand, -109 to -198 per thousand, and +2.0 to -12.0 per thousand for delta(13)C(VPDB), delta(2)H(VSMOW), and delta(18)O(VSMOW), respectively. Data evaluation by linear discrimination analysis (LDA) and by classification and regression tree (CART) analysis revealed the delta(18)O(VSMOW) values to be highly significant. Use of LDA on the delta(2)H(VSMOW) and delta(18)O(VSMOW) data from coffee of African and Central/South American provenance led to error rates of 5.7% and 7.7% for adaption and cross validation, respectively.  相似文献   

11.
The average values of carbon and oxygen isotopic contents (delta(13)C and delta(18)O) of 36 glycerol samples from fats have been determined. The examined samples arise from many fats of animal and plant origin, as well as from the three Italian hard cheeses Parmigiano-Reggiano, Grana Padano and Trentingrana. The total (13)C content allows one to distinguish between glycerol from plants with the C-4 carbon fixation pathway (maize, mean delta(13)C = -14.4 per thousand) and that from plants with the C-3 pathway (mean delta(13)C = -30.7 per thousand). The delta(13)C-values of glycerols of animal origin seem to depend on the diet of the animal, as suggested by the mean values -29.6, -29.0 and -25.1 per thousand, respectively, observed for Parmigiano-Reggiano, Trentingrana and Grana Padano. Additionally, the mean total (18)O content of glycerol samples of vegetable origin is approximately 23.8 per thousand, while that from animal fat is 15.1 per thousand. However, the delta(18)O mean values relative to Parmigiano-Reggiano, Grana Padano and Trentingrana are 11.8, 16.0 and 13.8 per thousand, respectively. The combination of the (13)C and (18)O measurements relative to the fat glycerol of the three cheeses might be considered a potential criterion of authentication.  相似文献   

12.
The stable isotope ratios ((13)C/(12)C, (15)N/(14)N, (18)O/(16)O, D/H) of animal feed and milk were investigated, considering cows stabled in two farms and fed with diets made up of different kinds of C(3) plants and different amounts of maize. Maize was characterised by delta(13)C, delta(18)O and deltaD values significantly higher than those of the C(3) plants, while, for the C(3) plants, Festuca arudinacea had significantly higher content of (13)C and (15)N. The delta(13)C and delta(18)O values of the overall diet and the delta(13)C of milk casein and lipids were shown to be significantly correlated with the percentage of maize in the animal diet. On the other hand, the delta(18)O values of milk water and the delta(18)O, deltaD and delta(15)N values of casein were shown to be only slightly influenced by the amount of maize in the feed, being probably more closely correlated with the geo-climatic and pedological characteristics of the area of origin and with the presence of fresh plant or silage in the ration. The delta(13)C value of casein was shown to be a suitable parameter for evaluating the amount of maize in the diet: each 10% increase in the maize content corresponded to a shift of 0.7 per thousand to 1.0 per thousand in the delta(13)C of casein. A threshold value of -23.5 per thousand for delta(13)C in milk casein, above which it is not possible to exclude the presence of maize in the diet, was suggested. The results obtained could be useful for determining mislabelling of dairy products declared to have been produced by pastured animals or of PDO cheeses with an established amount of maize in the diet and for verifying the unpermitted addition of exogenous components to milk.  相似文献   

13.
On-line delta34S analysis of sulfate using an elemental analyzer has a number of advantages vs. conventional off-line techniques, such as ease of operation, rapidity, and the requirement for small amounts of material. Although the analyses are performed by converting sulfate into SO2 gas, the effect of sulfate-delta18O composition upon the SO2-delta18O composition and the value of delta66 during elemental analysis, and ultimately the calculated sulfate-delta34S composition, has rarely been addressed. Three BaSO4 samples were prepared with known identical delta34S compositions, but with a wide range of delta18O compositions. delta18O values were shown to range over 40 per thousand, but conventional on-line delta34S analyses verified that the sulfate-delta34S compositions were identical. These results indicate that conventional on-line analysis of sulfate-delta34S is unaffected by the value of sulfate-delta18O, and suggest that sulfide-delta34S standards can be used to calibrate sulfate-delta34S analyses (and vice versa). Moreover, these results suggest that it may be possible to use on-line sulfur isotope analysis of SO2 to measure delta33S and Delta33S in addition to delta34S, as a faster and safer alternative to the SF6 technique currently utilized, and hence promote further study of mass-independent sulfur isotope fractionation effects.  相似文献   

14.
Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using in situ field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean delta values of the soil-emitted N2O were delta15N = -13.5 +/- 3.2 per thousand and delta18O = 26.2 +/- 1.4 per thousand for the penguin colony, delta15N = -11.5 +/- 5.1 per thousand and delta18O = 26.4 +/- 3.5 per thousand for the skua colony and delta15N = -18.9 +/- 0.7 per thousand and delta18O = 28.8 +/- 1.3 per thousand for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93 microg N2O--N kg(-1)). Under N2 conditions, much more N2O was formed (9.74 microg N2O--N kg(-1)), and the mean delta15N and delta18O values of N2O were -19.1 +/- 8.0 per thousand and 21.3 +/- 4.3 per thousand, respectively, from penguin colony soils, and -17.0 +/- 4.2 per thousand and 20.6 +/- 3.5 per thousand, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the predominant N2O source from Antarctic sea animal colonies.  相似文献   

15.
A set of bottled waters from a single natural spring distributed worldwide in polyethylene terephthalate (PET) bottles has been used to examine the effects of storage in plastic polymer material on the isotopic composition (delta18O and delta2H values) of the water. All samples analyzed were subjected to the same packaging procedure but experienced different conditions of temperature and humidity during storage. Water sorption and the diffusive transfer of water and water vapor through the wall of the PET bottle may cause isotopic exchange between water within the bottle and water vapor in air near the PET-water interface. Changes of about +4 per thousand for delta2H and +0.7 per thousand for delta18O have been measured for water after 253 days of storage within the PET bottle. The results of this study clearly indicate the need to use glass bottles for storing water samples for isotopic studies. It is imperative to transfer PET-bottled natural waters to glass bottles for their use as calibration material or potential international working standards.  相似文献   

16.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

17.
The determination of delta18O values in CO2 at a precision level of +/-0.02 per thousand (delta-notation) has always been a challenging, if not impossible, analytical task. Here, we demonstrate that beyond the usually assumed major cause of uncertainty - water contamination - there are other, hitherto underestimated sources of contamination and processes which can alter the oxygen isotope composition of CO2. Active surfaces in the preparation line with which CO2 comes into contact, as well as traces of air in the sample, can alter the apparent delta18O value both temporarily and permanently. We investigated the effects of different surface materials including electropolished stainless steel, Duran glass, gold and quartz, the latter both untreated and silanized. CO2 frozen with liquid nitrogen showed a transient alteration of the 18O/16O ratio on all surfaces tested. The time to recover from the alteration as well as the size of the alteration varied with surface type. Quartz that had been ultrasonically cleaned for several hours with high purity water (0.05 microS) exhibited the smallest effect on the measured oxygen isotopic composition of CO2 before and after freezing. However, quartz proved to be mechanically unstable with time when subjected to repeated large temperature changes during operation. After several days of operation the gas released from the freezing step contained progressively increasing trace amounts of O2 probably originating from inclusions within the quartz, which precludes the use of quartz for cryogenically trapping CO2. Stainless steel or gold proved to be suitable materials after proper pre-treatment. To ensure a high trapping efficiency of CO2 from a flow of gas, a cold trap design was chosen comprising a thin wall 1/4" outer tube and a 1/8" inner tube, made respectively from electropolished stainless steel and gold. Due to a considerable 18O specific isotope effect during the release of CO2 from the cold surface, the thawing time had to be as long as 20 min for high precision delta18O measurements. The presence of traces of air in almost all CO2 gases that we analyzed was another major source of error. Nitrogen and oxygen in the ion source of our mass spectrometer (MAT 252, Finnigan MAT, Bremen, Germany) give rise to the production of NO2 at the hot tungsten filament. NO2+ is isobaric with C16O18O+ (m/z 46) and interferes with the delta18O measurement. Trace amounts of air are present in CO2 extracted cryogenically from air at -196 degrees C. This air, trapped at the cold surface, cannot be pumped away quantitatively. The amount of air present depends on the surface structure and, hence, the alteration of the measured delta18O value varies with the surface conditions. For automated high precision measurement of the isotopic composition of CO2 of air samples stored in glass flasks an extraction interface ('BGC-AirTrap') was developed which allows 18 analyses (including standards) per day to be made. For our reference CO2-in-air, stored in high pressure cylinders, the long term (>9 months) single sample precision was 0.012 per thousand for delta13C and 0.019 per thousand for delta18O.  相似文献   

18.
In this paper we present an automated system for simultaneous measurement of CO(2) concentration, delta(13)C and delta(18)O from small (<1 mL) air samples in a short period of time (approximately 1 hour). This system combines continuous-flow isotope ratio mass spectrometry (CF-IRMS) and gas chromatography (GC) with an inlet system similar to conventional dual-inlet methods permitting several measurement cycles of standard and sample air. Analogous to the dual-inlet method, the precision of this system increases with the number of replicate cycles measured. The standard error of the mean for a measurement with this system is 0.7 ppm for the CO(2) concentration and 0.05 per thousand for the delta(13)C and delta(18)O with four replicate cycles and 0.4 ppm and 0.03 per thousand respectively with nine replicate cycles. The mean offset of our measurements from NOAA/CMDL analyzed air samples was 0.08 ppm for the CO(2) concentration, 0.01 per thousand for delta(13)C and 0.00 per thousand for delta(18)O. A specific list of the parts and operation of the system is detailed as well as some of the applications for micrometeorological and ecophysiological applications.  相似文献   

19.
The bacterial denitrification method for isotopic analysis of nitrate using N(2)O generated from Pseudomonas aureofaciens may overestimate delta(15)N values by as much as 1-2 per thousand for samples containing atmospheric nitrate because of mass-independent (17)O variations in such samples. By analyzing such samples for delta(15)N and delta(18)O using the denitrifier Pseudomonas chlororaphis, one obtains nearly correct delta(15)N values because oxygen in N(2)O generated by P. chlororaphis is primarily derived from H(2)O. The difference between the apparent delta(15)N value determined with P. aureofaciens and that determined with P. chlororaphis, assuming mass-dependent oxygen isotopic fractionation, reflects the amount of mass-independent (17)O in a nitrate sample. By interspersing nitrate isotopic reference materials having substantially different delta(18)O values with samples, one can normalize oxygen isotope ratios and determine the fractions of oxygen in N(2)O derived from the nitrate and from water with each denitrifier. This information can be used to improve delta(15)N values of nitrates having excess (17)O. The same analyses also yield estimates of the magnitude of (17)O excess in the nitrate (expressed as Delta(17)O) that may be useful in some environmental studies. The 1-sigma uncertainties of delta(15)N, delta(18)O and Delta(17)O measurements are +/-0.2, +/-0.3 and +/-5 per thousand, respectively.  相似文献   

20.
The stable-isotopic composition of nitrogen (delta15N) or carbon (delta13C) of body tissues depends on the isotopic composition of food sources and on shifts due to isotopic fractionation during metabolism. As little is known about the effects of pathophysiological conditions we measured delta15N and delta13C values in hair and hair amino acids of patients with cirrhosis (n = 21) and compared the results with those of healthy subjects (n = 100) randomly selected from the 1987-1988 VERA German nutrition survey population. Cirrhosis was reflected in lower hair 15N abundances (6.7 vs. 9.9 per thousand delta15N; P < 0.001) whereas hair 13C abundances did not differ from healthy subjects (-19.4 vs. -19.6 per thousand 13C). Distinct patterns of delta15N and delta13C values were measured in hair amino acids. The delta15N values of phenylalanine were significantly higher in cirrhotics (P < 0.001). With the exception of isoleucine, threonine, and proline all other measured amino acids showed lower delta15N values than healthy subjects (P < 0.001). Lower hair delta15N values were associated with cirrhotic liver disease which suggests that under this condition the altered liver amino acid metabolism affects the nitrogen isotopic composition of the amino acids used for hair protein synthesis. It remains to be determined in controlled studies whether the altered nitrogen isotopic composition directly reflects the pathophysiological condition or is related to differences in dietary protein intake from plant or animal food sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号