首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrafast dynamics of liquid sulphur dioxide have been studied over a wide temperature range and in solution. The optically heterodyne-detected and spatially masked optical Kerr effect (OKE) has been used to record the anisotropic and isotropic third-order responses, respectively. Analysis of the anisotropic response reveals two components, an ultrafast nonexponential relaxation and a slower exponential relaxation. The slower component is well described by the Stokes-Einstein-Debye equation for diffusive orientational relaxation. The simple form of the temperature dependence and the agreement between collective (OKE) and single molecule (e.g., NMR) measurements of the orientational relaxation time suggests that orientational pair correlation is not significant in this liquid. The relative contributions of intermolecular interaction-induced and single-molecule orientational dynamics to the ultrafast part of the spectral density are discussed. Single-molecule librational-orientational dynamics appear to dominate the ultrafast OKE response of liquid SO2. The temperature-dependent OKE data are transformed to the frequency domain to yield the Raman spectral density for the low-frequency intermolecular modes. These are bimodal with the lowest-frequency component arising from diffusive orientational relaxation and a higher-frequency component connected with the ultrafast time-domain response. This component is characterized by a shift to higher frequency at lower temperature. This result is analyzed in terms of a harmonic librational oscillator model, which describes the data accurately. The observed spectral shifts with temperature are ascribed to increasing intermolecular interactions with increasing liquid density. Overall, the dynamics of liquid SO2 are found to be well described in terms of molecular orientational relaxation which is controlled over every relevant time range by intermolecular interactions.  相似文献   

2.
The isotropic phase dynamics of a system of 4-n-hexyl-4'-cyano-biphenyl (6CB) molecules has been studied by molecular dynamics computer simulations. We have explored the range of 275-330 K keeping the system isotropic, although supercooled under its nematic transition temperature. The weak rototranslational coupling allowed us to separately evaluate translational (TDOF) and orientational degrees of freedom (ODOF). Evidences of subdiffusive dynamics, more apparent at the lowest temperatures, are found in translational and orientational dynamics. Mean square displacement as well as self-intermediate center of mass and rotational scattering functions show a plateau, also visible in the orientational correlation function. According to the mode coupling theory (MCT), this plateau is the signature of the beta-relaxation regime. Three-time intermediate scattering functions reveal that the plateau is related to a homogeneous dynamics, more extended in time for the orientational degrees of freedom (up to 1 ns). The time-temperature superposition principle and the factorization property predicted by the idealized version of MCT hold, again for both kinds of dynamics. The temperature dependence of diffusion coefficient and orientational relaxation time is well described by a power law. Critical temperatures Tc are 244+/-6 and 258+/-6 K, respectively, the latter is some 10 K below the corresponding experimental values. The different values of Tc we obtained indicate that ODOF freezes earlier than TDOF. This appears due to the strongly anisotropic environment that surrounds a 6CB molecule, even in the isotropic phase. The lifetime of these "cages," estimated by time dependent conditional probability functions, is strongly temperature dependent, ranging from some hundreds of picoseconds at 320 K to a few nanoseconds at 275 K.  相似文献   

3.
The relaxation of the many-body polarizability in liquid acetonitrile and chloroform at room temperature was studied by molecular-dynamics simulations. The collective polarizability induced by intermolecular interactions was included using first- and all-orders dipole-induced-dipole models and calculated considering both molecule-centered and distributed site polarizabilities. The anisotropic response was analyzed using a separation scheme that allows a decomposition of the total response in terms of orientational and collision-induced effects. We found the method effective in approximately separating the contributions of these relaxation mechanisms, although the orientational-collision-induced interference makes a non-negligible contribution to the total response. In both liquids the main contribution to the anisotropic response is due to orientational dynamics, but intermolecular collision-induced (or translational) effects are important, especially at short times. We found that higher-order interaction-induced effects were essentially negligible for both liquids. Larger differences were found between the center-center and site-site models, with the latter showing faster polarizability relaxation and better agreement with experiment. Isotropic and anisotropic spectra were computed from the corresponding time correlation functions. The lowest-frequency contributions are largely suppressed in the isotropic spectra and their overall shape is similar to the purely collision-induced contribution to the anisotropic spectra, but with an amplitude which is smaller by a factor of approximately 5 in acetonitrile and approximately 3 in chloroform.  相似文献   

4.
Resonant pump polarizability response spectroscopy (RP-PORS) was used to study the isotropic and anisotropic solvent structural relaxation in solvation. RP-PORS is the optical heterodyne detected transient grating (OHD-TG) spectroscopy with an additional resonant pump pulse. A resonant pump excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored by the OHD-TG spectroscopy. This experimental method allows measuring the dispersive and absorptive parts of the signal as well as fully controlling the beam polarizations of incident pulses and signal. The experimental details of RP-PORS were described. By performing RP-PORS with Coumarin 153(C153) in CH(3)CN and CHCl(3), we have successfully measured the isotropic and anisotropic solvation polarizability spectra following electronic excitation of C153. The isotropic solvation polarizability responses result from the isotropic solvent structural relaxation of the solvent around the solute whereas the anisotropic solvation polarizability responses come from the anisotropic translational relaxation and orientational relaxation. The solvation polarizability responses were found to be solvent-specific. The intramolecular vibrations of CHCl(3) were also found to be coupled to the electronic excitation of C153.  相似文献   

5.
The ultrafast dynamics of polybutadiene have been studied using ultrafast optical-Kerr-effect spectroscopy. The data are compared with measurements on 1,3- and 1,4-pentadiene. The two diene derivatives have quite distinct subpicosecond dynamics, with an important contribution from an intramolecular torsional mode in the 1,4-derivative. The main part of the polymer spectral density can be assigned, by analogy with the data for 1,4-pentadiene, to intramolecular torsional motion about carbon–carbon single bonds. The picosecond diffusive orientational relaxation times of the dienes are not well described by simple hydrodynamics.  相似文献   

6.
7.
Echo detected electron paramagnetic resonance (EPR) study of orientational molecular motion of nitroxide spin probes in glassy solvents was performed by evaluating the anisotropic transverse relaxation rate 1/T(2) at different positions of the EPR spectrum. Experiments were done on nitroxides of different sizes and shapes, in different solvent glasses, with different deuteration degree, and at different temperatures. We found that the properties of the solvent glass have a much stronger impact on the relaxation rate than the size and shape of the nitroxide have. We concluded that the anisotropic relaxation is induced by reordering of the solvent cage and not by small angle fluctuations of the nitroxide in the cage or intramolecular motion of nitroxide.  相似文献   

8.
Dielectric response of imidazolium-based room-temperature ionic liquids   总被引:1,自引:0,他引:1  
We have used microwave dielectric relaxation spectroscopy to study the picosecond dynamics of five low-viscosity, highly conductive room temperature ionic liquids based on 1-alkyl-3-methylimidazolium cations paired with the bis((trifluoromethyl)sulfonyl)imide anion. Up to 20 GHz the dielectric response is bimodal. The longest relaxation component at the time scale of several 100 ps reveals strongly nonexponential dynamics and correlates with the viscosity in a manner consistent with hydrodynamic predictions for the diffusive reorientation of dipolar ions. Methyl substitution at the C2 position destroys this correlation. The time constants of the weak second process at the 20 ps time scale are practically the same for each salt. This intermediate process seems to correlate with similar modes in optical Kerr effect spectra, but its physical origin is unclear. The missing high-frequency portion of the spectra indicates relaxation beyond the upper cutoff frequency of 20 GHz, presumably due to subpicosecond translational and librational displacements of ions in the cage of their counterions. There is no evidence for orientational relaxation of long-lived ion pairs.  相似文献   

9.
Electron scattering expressions are presented which are applicable to very general conditions of implementation of anisotropic ultrafast electron diffraction (UED) experiments on the femto- and picosecond time scale. "Magic angle" methods for extracting from the experimental diffraction patterns both the isotropic scalar contribution (population dynamics) and the angular (orientation-dependent) contribution are described. To achieve this result, the molecular scattering intensity is given as an expansion in terms of the moments of the transition-dipole distribution created by the linearly polarized excitation laser pulse. The isotropic component (n=0 moment) depends only on population and scalar internuclear separations, and the higher moments reflect bond angles and evolve in time due to rotational motion of the molecules. This clear analytical separation facilitates assessment of the role of experimental variables in determining the influence of anisotropic orientational distributions of the molecular ensembles on the measured diffraction patterns. Practical procedures to separate the isotropic and anisotropic components of experimental data are evaluated and demonstrated with application to reactions. The influence of vectorial properties (bond angles and rotational dynamics) on the anisotropic component adds a new dimension to UED, arising through the imposition of spatial order on otherwise randomly oriented ensembles.  相似文献   

10.
The translational motion of 4-n-hexyl-4'-cyanobiphenyl (6CB) in its isotropic phase has been studied by atomistic molecular dynamics simulation from 280 to 330 K. The mean square displacement shows evidence of a subdiffusive dynamics, with a plateau that becomes very apparent at the lowest temperatures. A three-time self-intermediate scattering function reveals that this plateau is connected with a homogeneous dynamics that, at longer times, becomes heterogeneous and finally exponential. These features are shared by, for example, a high-density system of hard spheres, which supports the universal character of the translational dynamics of liquids in their supercooled condition. As predicted by the idealized version of the mode-coupling theory (MCT), the diffusion coefficient dependence upon temperature is well described by a power law, with a critical temperature very close to that obtained by experimental measurements on orientational relaxation. This agreement might indicate a complete freezing of both rotational and translational intradomain dynamics. The time-temperature superposition principle also holds. The shape of the cage that surrounds a 6CB molecule has been reconstructed, and this analysis suggests a preferential side-by-side arrangement of molecules, which locally tend to align their long axes even in the isotropic phase.  相似文献   

11.
Contribution to understanding of the molecular dynamics in liquids   总被引:1,自引:0,他引:1  
The dielectric relaxation spectroscopy is used for studying the orientational molecular dynamics in the isotropic (I) and nematic (N) phases of two mesogenic liquids composed of the molecules of similar structure and length, but of an essentially different polarity: n-heptylcyanobiphenyl, C(7)H(15)PhPhCN, 7CB (molecular dipole moment mu approximately 5D) and 4-(trans-4'-n-hexylcyclohexyl)isothiocyanatobenzene, C(6)H(13)CyHxPhNCS, 6CHBT (mu approximately 2.5D); advantageously, the temperatures of the I-N phase transition for the two compounds are very close to each other (T(NI) = 316.6 +/- 0.2 K). It is shown that regardless of the differences in polarity of 7CB and 6CHBT molecules and their abilities in dipolar aggregation, the values and temperature dependences of the relaxation time (corresponding to the rotational diffusion of the molecules around their short axis) are very close to each other, in both the isotropic and nematic phases of the liquids studied. Therefore, the data show that the dielectric relaxation processes occurring in dipolar liquids in the isotropic and nematic states lead through the rotational diffusion of individual molecules and the diffusion seems to be not influenced by the intermolecular interactions.  相似文献   

12.
Summary: The swelling properties of photochemically crosslinked poly(n-butyl acrylate) (PABu) networks in isotropic and anisotropic solvents were investigated experimentally. The purpose of this study was to examine the swelling kinetics of PABu networks in isotropic solvents and to compare the results obtained which those observed in the case of the low molecular weight liquid crystal 4-cyano-4′-n-pentyl-biphenyl known as 5CB. The phase diagrams were established in terms of composition and temperature for isotropic solvents, as toluene, acetone, cyclohexane, and methanol, and 5CB, using the plateau values corresponding to equilibrium states of swelling. The polymer networks were prepared via free radical polymerization/crosslinking processes by ultraviolet (UV) radiation of initial mixtures made up from a monomer, a crosslinker, and a photoinitiator. PABu networks with several crosslinking densities were formed using different quantities of difunctional monomer hexanedioldiacrylate (HDDA). Immersion of these networks in excess solvent allows measuring the solvent uptake by determination of the weight in isotropic solvents and diameter in an anisotropic solvent (5CB). Swelling data were rationalized by calculating weight and diameter ratios considering swollen to dry network states of the samples.  相似文献   

13.
We have performed classical molecular dynamics simulations to calculate the Optical Kerr effect (OKE) spectra of 1-methoxyethylpyridinium dicyanoamide, a room-temperature ionic liquid (IL) which has been recently studied by Shirota and Castner (Shirota, H. ; Castner, E. J. Phys. Chem. A 2005, 109, 9388-9392) in comparison to its neutral isoelectronic solvent mixture. Our theoretical and computational studies show that the decay of the collective polarizability anisotropy correlation exhibits several different time scales originating from inter- and intramolecular dynamics, in good agreement with experiments. What's more, we find that the portion of the collective anisotropic polarizability relaxation due to "interaction-induced" phenomena is important at times much longer than those observed in normal solvents when these are far from their glass transition temperature. From our long (60 ns) molecular dynamics simulations, we are able to determine the appropriate time scales for orientational relaxation and interaction-induced processes occurring in the liquid. We find that the cationic contribution to the OKE signal is predominant. Because of the slow nature of relaxation processes in ILs, these calculations are very time, memory, and storage intensive. In the context of this research, we have developed a polarizable force field for this system and also theoretical methodology to generate molecular polarizabilities for arbitrarily shaped molecules and ions from corresponding atomic polarizabilities. We expect this methodology to have an important impact on the speed of molecular dynamics simulations of polarizable systems in the future.  相似文献   

14.
The 2H-N.M.R. spectra of mixtures of the non-mesogenic compound 4-cyano-4'-methylbiphenyl (1CB) and the nematic liquid crystal 4-cyano-4'-n-pentylbiphenyl (5CB) are measured as a function of concentration and temperature. Concentrations of up to 25 mol% 1CB have no effect on the N.M.R. spectrum and therefore on the orientational order of 5CB at a given reduced temperature. The order matrix of the 1CB is calculated from the measured quadrupole couplings. The results are analysed in terms of a model for orientational order that includes two anisotropic terms: (a) interaction between the molecular quadrupole moment and the mean electric field gradient of the medium, and (b) short range repulsive interactions. An estimate of the molecular quadrupole moment tensor of 1CB is obtained from the analysis.  相似文献   

15.
A methodology recently introduced to describe orientational order in liquid carbon tetrachloride is extended to the plastic crystal phase of XY4 molecules. The notion that liquid and plastic crystal phases are germane regarding orientational order is confirmed for short intermolecular distances but is seen to fail beyond, as long range orientational correlations are found for the simulated solid phase. It is argued that, if real, such a phenomenon may not to be accessible with direct (diffraction) methods due to the high molecular symmetry. This behavior is linked to the existence of preferential orientation with respect to the fcc crystalline network defined by the centers of mass. It is found that the dominant class accounts, at most, for one-third of all configurations, with a feeble dependence on temperature. Finally, the issue of rotational relaxation is also addressed, with an excellent agreement with experimental measures. It is shown that relaxation is nonhomogeneous in the picosecond range, with a slight dispersion of decay times depending on the initial orientational class. The results reported mainly correspond to neopentane over a wide temperature range, although results for carbon tetrachloride are included, as well.  相似文献   

16.
The 2H-N.M.R. spectra of mixtures of the non-mesogenic compound 4-cyano-4′-methylbiphenyl (1CB) and the nematic liquid crystal 4-cyano-4′-n-pentylbiphenyl (5CB) are measured as a function of concentration and temperature. Concentrations of up to 25 mol% 1CB have no effect on the N.M.R. spectrum and therefore on the orientational order of 5CB at a given reduced temperature. The order matrix of the 1CB is calculated from the measured quadrupole couplings. The results are analysed in terms of a model for orientational order that includes two anisotropic terms: (a) interaction between the molecular quadrupole moment and the mean electric field gradient of the medium, and (b) short range repulsive interactions. An estimate of the molecular quadrupole moment tensor of 1CB is obtained from the analysis.  相似文献   

17.
The thermally induced cholesteric to isotropic transition of lyotropic polybenzylglutamate liquid crystals in six solvent combinations was examined optically. The solvents chosen for study support both low and high pitch values, positive and negative pitch temperature coefficients, and polypeptide denaturation. The biphasic zone below the clearing temperature is broad and solvent dependent. Unusual large-scale phase separations and solution morphologies occur in some solvents. No evidence was found for pretransitional chiral orientational ordering near the clearing point in the high-temperature isotropic phase.  相似文献   

18.
Donor-substituted triarylboranes are investigated by femtosecond absorption spectroscopy to study the influence of molecular symmetry on solvation. In solvents of varying polarity and differently fast solvation response, the solvation dynamics of a highly symmetric triple carbazole-substituted triarylborane (TCB) is compared to a single carbazole-substituted triarylborane (CB). The decomposition of the transient absorption spectra allows us to measure the solvation time by means of the time-dependent solvatochromic shift of the excited-state absorption (ESA) and the stimulated emission (SE). For all polar solvents under study we find an accelerated solvation process for TCB compared to the less symmetric CB. The difference is particularly large for solvents with a slow response. In order to explain these findings we propose that the electronic excitation is mobile in the symmetric molecule and can change between the three carbazole chromophores probably by a hopping mechanism. The excited-state dipole moment of TCB can thereby respond to the solvent relaxation and changes its direction according to the local field of the solvation shell. Thus, in a symmetric solute the possibility of an intramolecular charge delocalization over equivalent sites accelerates the approach of the minimum-energy configuration.  相似文献   

19.
Molecular dynamics simulations are carried out to address the density-driven glass transition in a system of rodlike particles that interact with the Gay-Berne potential. Since crystallization occurs in this system on the time scale of the simulations, direct simulation of the glass transition is not possible. Instead, glasses with isotropic orientational order are heated to a temperature T, and the relaxation times by which nematic orientational order develops are determined. These relaxation times appear to diverge at a critical density rho(c); i.e., the system can equilibrate at rhorho(c) (at the temperature T). The relaxation times follow a power-law scaling as the critical density is approached, suggesting that this density-driven glass transition concurs with mode coupling theory.  相似文献   

20.
《Chemical physics letters》2002,350(1-2):82-87
Optical heterodyne detected optical Kerr effect (OHD-OKE) experiments are used to study the orientational dynamics of the liquid crystal 4-octyl-4-biphenylcarbonitrile (8CB) in the isotropic phase near the isotropic to nematic phase transition. The results are compared to those for three other liquid crystals. The 8CB data display a short time scale temperature independent power law decay and a long time scale exponential decay with a temperature dependence described by Landau–de Gennes theory. The power law exponent is −0.56. Combining this result with previous results for three other liquid crystals [J. Chem. Phys. 116 (2002) 6339; J. Chem. Phys. 116 (2002) 360], it is found that the power law exponent depends linearly on the aspect ratio of the liquid crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号