首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We fabricated nano-carbon (NC) doped MgB2 bulks using an in situ process in order to improve the critical current density (Jc) under a high magnetic field and evaluated the correlated effects of the doped carbon content and sintering temperature on the phase formation, microstructure and critical properties. MgB2−xCx bulks with x = 0 and 0.05 were fabricated by pressing the powder into pellets and sintering at 800 °C, 900 °C, or 1000 °C for 30 min.We observed that NC was an effective dopant for MgB2 and that part of it was incorporated into the MgB2 while the other part remained (undoped), which reduced the grain size. The actual C content was estimated to be 68–90% of the nominal content. The NC doped samples exhibited lower Tc values and better Jc(B) behavior than the undoped samples. The doped sample sintered at 900 °C showed the highest Jc value due to its high doping level, small amount of second phase, and fine grains. On the other hand, the Jc was decreased at a sintering temperature of 1000 °C as a result of the formation of MgB4 phase.  相似文献   

2.
Iron-doped MgB2 bulks are prepared by hybridized diffusion method using nano-powder and macro-powder of pure iron as iron source. The doping effect on superconductivity transition temperature, Tc, and critical current Jc have been investigated. It is found that both Tc and Jc of MgB2 show quite different features depending on the particle size of the dopant powders. It is demonstrated that different from iron bulk or large size powders, iron nano-powders are active dopant for MgB2 which suppresses both Tc and Jc of MgB2.  相似文献   

3.
We fabricated MgB2 bulks by an in situ Mg diffusive reaction method from compacted B and compacted mixtures of Mg and B respectively. All samples were sintered at 1100 °C for 2 h. MgO impurity phase, density, and critical current density (Jc) were found to be dependent of the starting amount of mixing Mg powder. We also found that the MgO formation in MgB2 matrix was not mainly attributed to the starting amount of additional Mg powder for Mg diffusive reaction. This indicates that MgO presented in the starting Mg powder is hardly diffused into compacted B.  相似文献   

4.
MgB2 bulks were prepared by an in situ process which utilizes the reaction between boron and magnesium powder. The reaction time was fixed at 0.5 h and the temperature was changed from 600 °C to 1000 °C. The density decrease due to pore formation and mass (mainly magnesium) loss during the formation reaction of MgB2 was observed in all samples. In addition to the pore formation, a pellet expansion which can be explained by the outgrowth of MgB2 grains was also observed. Two different mechanisms were adopted to explain the pore formation; Kirkendall pores formed at a temperature below the melting point (m.p.) of magnesium by a difference in the diffusivity between magnesium and boron, and the pores formed at a temperature above the m.p. by melting of magnesium and a capillary movement. The density, Tc and Jc results suggest that the current carrying capacity can be improved by a careful control of the process parameters regarding a pore evolution.  相似文献   

5.
The effect of aromatic hydrocarbon (benzene, C6H6) addition on lattice parameters, microstructure, critical temperature (Tc), critical current density (Jc) of bulk MgB2 has been studied. In this work only 2 mol% C6H6 addition was found to be very effective in increasing the Jc values, while resulting in slight reduction of the Tc. Jc values of 2 mol% C6H6 added MgB2 bulks reached to 1.83×106 A/cm2 at 15 K and 0 T. Microstructural analyses suggest that Jc enhancement is associated with the substitution of carbon with boron and which also results in the smaller MgB2 grain size. The change in the lattice parameters or the lattice disorder is claimed as a cause of the slight reduction in the Tc by carbon addition. We note that our results show the advantages of C6H6 addition include homogeneous mixing of precursor powders, avoidance of expansive nanoadditives, production of highly reactive C, and significant enhancement in Jc of MgB2, compared to un-doped samples.  相似文献   

6.
王银博  薛驰  冯庆荣 《物理学报》2012,61(19):197401-197401
利用混合物理化学气相沉积法(hybrid physical-chemical vapor deposition, HPCVD)可以制备出高性能的MgB2超导薄膜, 再对薄膜进行钛(Ti)离子辐照处理.经过辐照处理后的样品被掺入了Ti元素, 与未处理的干净MgB2样品相比,其超导转变温度没有出现大幅度的下降, 而在外加磁场下的临界电流密度得到了明显的提高,同时样品的上临界磁场也得到了提高. 在温度5 K, 外加垂直磁场为4 T的情况下, Ti离子辐照剂量为1× 1013/cm2的样品的临界电流密度达到了1.72× 105 A/cm2, 比干净的MgB2要高出许多,而其超导转变温度仍能维持在39.9 K的较高水平.  相似文献   

7.
郭志超  索红莉  刘志勇  刘敏  马麟 《物理学报》2012,61(17):177401-177401
本文对比研究了超导材料磁测量中的SQUID法和Campbell法; 并用高压PIT法制备的超导材料MgB2作为测量样品,用两种方法,测量了超导样品的临界电流密度, 分别得到了样品的Jc-B关系曲线; SQUID法测量样品的外磁场可以达到6 T, 此时材料已经处于失超状态,此方法测得的结果是样品各个小区域结果的平均值, SQUID还可以用来进一步标度材料的钉扎力行为,研究材料磁特性. Campbell法测量只能测量到外磁场强度为0.4 T,外磁场的交流部分的频率可以达到800 Hz, 用这种测量方法得到的是整块样品的电流,由于测量计及材料内部微观结构缺陷等影响电流传输因素, 所测结果小于直流磁化法,但更切近材料实际电流,能用来深入研究材料内部结构差别对材料电性能的影响.  相似文献   

8.
Nano-diamond and titanium concurrently doped MgB2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on JcH behavior and pinning force scaling features of MgB2 have been investigated. Although Tc was slightly depressed, Jc of MgB2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the Jc value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB2, a unique nanocomposite in which TiB2 forms a thin layer surrounding MgB2 grains whereas nano-diamond particles were wrapped inside the MgB2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB2 system.  相似文献   

9.
The MgB2 coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The MgB2/Cu tapes were fabricated over a wide temperature range of 460-520 °C by using hybrid physical-chemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (ΔTc) of about 0.3-0.6 K. The highest critical current density (Jc) of 1.34 × 105 A/cm2 at 5 K under 3 T is obtained for the MgB2/Cu tape grown at 460 °C. To further improve the flux pinning property of MgB2 tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure MgB2/Cu tapes, the MgB2 on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the MgB2 grain boundaries lead to strong improvement in Jc for the MgB2/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of 520 °C showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ∼5.8 × 106 A/cm2 and Jc(20 K, 1.5 T) ∼2.4 × 105 A/cm2 is obtained for the 2-μm-thick MgB2/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate MgB2 conductors with high Tc and Jc values which are useful for large scale applications.  相似文献   

10.
孙辉辉  杨烨  王磊  C.H.Cheng  冯勇  赵勇 《物理学报》2010,59(5):3488-3493
本文研究了柠檬酸掺杂的MgB2超导材料的Jc-B行为及其钉扎机理.在纯MgB2多晶样品中,δTc钉扎起主要作用,而在掺杂的样品中,则是δl钉扎和δTc钉扎共同作用,并且δl钉扎机理占主要作用,其贡献比重随着掺杂量的增加而增加.从Jc-B行为和钉扎行为的分析都可以得到 关键词: 柠檬酸 2')" href="#">MgB2 Tc钉扎')" href="#">δTc钉扎 l钉扎')" href="#">δl钉扎  相似文献   

11.
We studied the flux pinning properties by grain boundaries in MgB2 films prepared by using a hybrid physical chemical vapor deposition method on the c-axis oriented sapphire substrates. All the films we report here had the columnar grains with the growth direction perpendicular to the substrates and the grain sizes in the range of a few hundred nanometers. At very low magnetic fields, no discernable grain-boundary (GB) pinning effect was observed in all measuring temperatures, but above those fields, the effect of GB flux pinning was observed as enhanced critical current densities (Jcs) and reduced resistances when an external magnetic field (B) was aligned parallel to the c-axis. We interpret the B dependence of Jc in the terms of flux line lattice shear inside the columnar grains activated by dislocations of Frank–Read source while the flux lines pinned by GB act as anchors for dislocations. Magnetic field dependence of flux pinning force density for B parallel to the c-axis was reasonably explained by the above model.  相似文献   

12.
We investigated the influence of surface damage on the critical current density (Jc) of MgB2 thin films via 140-keV Co-ion irradiation. The Jc(H) of the surface-damaged MgB2 films was remarkably improved in comparison with that of pristine films. The strong enhancement of Jc(H) caused by a surface damage in MgB2 films can be ascribed to additional point defects along with an atomic lattice displacement introduced through low-energy Co-ion irradiation, which is consistent with the change in the pinning mechanism, from weak collective pinning to strong plastic pinning. The irreversible magnetic field (Hirr) at 5 K for surface-damaged MgB2 films with a thickness of 850 and 1300 nm was increased by a factor of approximately 2 compared with that of a pristine film. These results show that the surface damage produced by low energy ion irradiation can serve as an effective pinning source to improve Jc(H) in a MgB2 superconductor.  相似文献   

13.
The critical current densities of polycrystalline bulk SmFeAsO1−xFx prepared by the powder-in-tube (PIT) method and by a conventional solid-state reaction were investigated using the remnant magnetic moment method and Campbell’s method. Two types of shielding current, corresponding to global and local critical current densities Jc were observed using both measurement methods. The global and local Jc were on the order of 107 A/m2 and 1010 A/m2 at 5 K, respectively. The local Jc decreased slightly with increasing magnetic field. The global Jc was independent of the preparation method, while the local Jc was larger for samples prepared by PIT than for those prepared by solid-state reaction.  相似文献   

14.
ABSTRACT

The blue phase of YBa2Cu3O7- δ (YBCO) family, Y2Cu2O5 (Y202) nanoparticles were prepared and doped into (YBCO) superconductor and the effect of doping on critical current density and critical temperature was investigated. Y202 nanoparticles with particle sizes of 47, 107 and 206?nm were prepared by a sol–gel combustion method and added into the YBCO superconductor by 0.5–2?wt.%. XRD and scanning electron microscope measurements were used to characterize the samples. The measurement of critical current density at 77?K revealed that the doped superconductors had larger critical current density compared to the undoped superconductors. For a fixed dopant concentration, by increasing the size of nanoparticles, the Jc was increased. For the samples including 0.5?wt.% of nanoadditives, Jc was higher. The highest critical current density of 137?A/cm2 was measured for the superconductors containing 0.5?wt.% of 206?nm Y202 nanoparticles. Also, by increasing the nanoparticles concentration, the Tc was reduced.  相似文献   

15.
Pure MgBMgB2 超导体 临界密度 自我传播 预热温度 超导电性SHS method, bulk MgB2 superconductor, superconductivityProject supported by the Natural Science Foundation of Gansu province of China (Grant No ZS032-B25-019).2005-03-187/2/2005 12:00:00 AMPure MgB2 bulk samples are successfully synthesized by self-propagatlng hlgh-temperature synthesis (SHS) method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×10^6A/cm^2 (10K, 0.5T) and 1.7×10^6A/cm^2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.  相似文献   

16.
We have studied the effect of a small amount of Y-site substitution by La or Pr ions on the vortex pinning in the Y–Ba–Cu–O system. (Y1-xLax)–Ba–Cu–O and (Y1-xPrx)–Ba–Cu–O bulks were fabricated by the melt-textured growth, in which x was varied from 0 to 0.01. The critical current density Jc at 77 K is improved in magnetic fields parallel to the c-axis above 2–4.5 T and the corresponding irreversibility field, Hirr, shifts to the higher value in both bulks.  相似文献   

17.
Measurements of the critical current density (Jc) by magnetisation and the upper critical field (Hc2) by magnetoresistance have been performed for hafnium-doped MgB2. There has been a remarkable enhancement of Jc as compared to that by ion irradiation without any appreciable decrease in Tc, which is beneficial from the point of view of applications. The irreversibility line extracted from Jc shows an upward shift. In addition, there has been an increase in the upper critical field which indicates that Hf partially substitutes for Mg. Hyperfine interaction parameters obtained from time differential perturbed angular correlation (TDPAC) measurements revealed the formation of HfB and HfB2 phases along with the substitution of Hf. A possible explanation is given for the role of these species in the enhancement of Jc in MgB2 superconductor.  相似文献   

18.
MgB2 coated conductors (CCs), which can avoid the low packing density problem of powder-in-tube (PIT) processed wires, can be a realistic solution for practical engineering applications. Here we report on the superior superconducting properties of MgB2 CCs grown directly on the flexible metallic Hastelloy tapes without any buffer layer at various deposition temperatures from 520 to 600 °C by using hybrid physical–chemical vapor deposition (HPCVD) technique. The superconducting transition temperatures (Tc) are in the range of 38.5–39.4 K, comparable to bulk samples and high quality thin films. Clear (101) and (002) reflection peaks of MgB2 are observed in the X-ray diffraction patterns without any indication of chemical reaction between MgB2 and Hastelloy tapes. From scanning electron microscopy, it was found that connection between MgB2 grains and voids strongly depend on the growth temperature. A systematic increase in the flux pinning force density and thereby the critical current density with decreasing growth temperature was observed for the MgB2 CCs. The critical current density (Jc) of Jc(5 K, 0 T) ~107 A/cm2 and Jc(5 K, 2.5 T) ~105 A/cm2 has been obtained for the sample fabricated at a low growth temperature of 520 °C. The enhanced Jc (H) behavior can be understood on the basis of the variation in the microstructure of MgB2 CCs with growth temperature.  相似文献   

19.
High-density MgB2 (HD-MgB2) superconducting samples (D ⩾ 2.2 g/cm3), using different sources of magnesium powder as raw material, were synthesized in ambient pressure in a rich Mg environment. The magnesium powders used in the fabrication process include nanometer-sized magnesium particles, powders from Alfa Aesar, ordinary off-the-shelf powder, and magnesium chip. The fabrication procedure involved a double-sintering process in a rich-Mg environment. A transition temperature T c of 39 K was observed. Samples with the equally high density and matching superconducting properties were obtained as well by a triple sintering process of the MgB2 powder directly from Alfa Aesar.   相似文献   

20.
Silver-clad tapes of highT c Bi-Pb-Sr-Ca-Cu-O superconductors have been fabricated through the powder-in-tube method. The critical current density, J c , of a thick tape was 534 A.cm−2 (77 K, 0 T). Subsequent rolling and sintering of the tapes led to a gradual decrease inJ c, instead of the expected increase. This was caused by the microcracks developed in the core material by a rather drastic reduction during the rolling of the tapes. A modified and well controlled rolling technique, on the other hand, resulted in much improvedJ c values. Repeated rolling and sintering resulted in a good grain alignment and no microcracks were observed. In the present studies, maximumJ c of 1846 A.cm−2 (77 K, 0 T) and 2.43 × 104 A.cm−2 (4.2 K, 0 T) have been obtained Optimization of the processing and sintering parameters are expected to lead to still higherJ c values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号