首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The field equations of general relativity are solved to post-Newtonian order for a frame of reference having an arbitrary time-dependent, translational acceleration and an arbitrary time-dependent angular velocity. The derivation is based on a new 3+1 decomposition of the Einstein field equations and geodesic equation of motion. The resulting space-time metric and equation of motion contain gravitational terms, inertial terms, and coupled gravitational-inertial terms. These effects are expressed explicitly in terms of the Newtonian potential and standard post-Newtonian scalar and vector potentials. The physical meaning of the formulas derived is illustrated by application to a system of point-like gravitating masses. These results should be useful for the investigation of general relativistic effects in the analysis of real experimental measurements made with respect to a noninertial frame of reference, such as the surface of the rotating earth or an accelerated spacecraft.  相似文献   

2.
3.
By means of a formal solution to the Einstein gravitational field equations a slow motion expansion in inverse powers of the speed of light is developed for the metric tensor. The formal solution, which satisfies the deDonder coordinate conditions and the Trautman outgoing radiation condition, is in the form of an integral equation which is solved iteratively. A stress-energy tensor appropriate to a perfect fluid is assumed and all orders of the metric needed to obtain the equations of motion and conserved quantities to the 21/2post-Newtonian approximation are found. The results are compared to those obtained in another gauge by S. Chandrasekhar. In addition, the relation of the fast motion approximation to the slow motion approximation is examined.  相似文献   

4.
In the framework of the Lorentz invariant theory of gravitation a cosmology in the flat space-time is investigated. As in the Newtonian cosmology we start from an infinitely extended system of incoherent matter under the influence of its own gravitational field. The field equations, the equations of motion and the world postulate of homogenity and isotropy for geodetic observes lead then to the Friedman equation. In order to handle the coupled system of equations for the gravitational field and the matter a conveniant approximation method is developed. The calculations are carried out in the second order of this method. The Einstein theory, which is in some respect equivalent to the Lorentz invariant theory of gravitation, serves as a guiding principle for our formal developements. On the other hand the flat space-time cosmology presented here, gives rise to a new interpretation of the Einstein Cosmology.  相似文献   

5.
A new (3+1)-dimensional decomposition of the Einstein gravitational field equations is obtained for a general spacetime. The metric is taken in the form $$ds^2 = e^{ - 2u} k_{ab} (dx^a + \xi ^a dt)(dx^b + \xi ^b dt) - c^2 e^{2u} dt^2 $$ and the resulting equations treatk ab as the metric in the space-like hypersurfacest=constant. It is shown that this decompostion forms a more convenient starting point for slow motion approximations than does their usual 4-dimensional formulation. This is illustrated by a derivation of the first post-Newtonian approximation to the field equations, the simplicity there resulting fromk ab being still flat to this order.  相似文献   

6.
Einstein's gravitational field equations in empty space outside a massive plane with infinite extension give a class of solutions describing a field with flat spacetime giving neutral, freely moving particles an acceleration. This points to the necessity of defining the concept gravitational field not simply by the nonvanishing of the Riemann curvature tensor, but by the nonvanishing of certain elements of the Christoffel symbols, called the physical elements, or the nonvanishing of the Riemann curvature tensor. The tidal component of a gravitational field is associated with a nonvanishing Riemann tensor, while the nontidal components are associated with nonvanishing physical elements of the Christoffel symbols. Spacetime in a nontidal gravitational field is flat. Such a field may be separated into a homogeneous and a rotational component. In order to exhibit the physical significance of these components in relation to their transformation properties, coordinate transformations inside a given reference frame are discussed. The mentioned solutions of Einstein's field equations lead to a metric identical to that obtained as a result of a transformation from an inertial frame to a uniformly accelerated frame. The validity of the strong principle of equivalence in extended regions for nontidal gravitational fields is made clear. An exact calculation of the weight of an extended body in a uniform gravitational field, from a global point of view, gives the result that its weight is independent of the position of the scale on the body.  相似文献   

7.
An extension of the parametrized post-Newtonian (PPN) formalism to third order in the expansion parameterm/r is used to derive analytical expressions accurate to the same order for the motion of test particles and photons in the presence of the gravitational field of the sun represented by a static, isotropic metric. The consequences of including higher-order terms are discussed in relation to the so-called classical gravitational tests for the case of general relativity theory. Present observational or experimental data are not accurate enough to detect variations due to the inclusion of higher-order terms but a planned solar probe experiment may provide information that would make such detection possible.  相似文献   

8.
We consider an asymptotically flat space-time generated by a perfect fluid source of compact spatial support. Using the de Donder gauge conditions, the Einstein equations are reduced to a new form of Poisson-type equations. A formal iterative scheme is set up to solve these equations by expanding the components of the metric tensor in powers ofc –1. The coefficient of each power ofc –1 depends on the asymptotically retarded timeu andx, y, z and satisfies a Poisson-type equation. Assuming asymptotic flatness the solution is carried out in the first orders. The results are explicit expressions of the metric up to orderc –4 in terms of the source functions. These expressions hold over all space-time. A further expansion in powers ofr –1 gives the first terms of the metric that contribute to gravitational radiation.  相似文献   

9.
The point of view expressed in the literature that gravitomagnetism has not yet been observed or measured is not entirely correct. Observations of gravitational phenomena are reviewed in which the gravitomagnetic interaction—a post-Newtonian gravitational force between moving matter—has participated and which has been measured to 1 part in 1000. Gravitomagnetism is shown to be ubiquitous in gravitational phenomena and is a necessary ingredient in the equations of motion, without which the most basic gravitational dynamical effects (including Newtonian gravity) could not be consistently calculated by different inertial observers.  相似文献   

10.
A flat space-time time-like curve is considered from the point of view of an instantaneous comoving inertial observer. In the context of the ‘vierbein’ formalism a projection operator is introduced, able to project 3-vectors, belonging to the 3-space of the comoving observer, out of space-time 4-vectors. The motion of an accelerated particle relative to the comoving inertial frame is briefly reviewed by means of the projection technique, and the three space-like components of the Frenet-Serret tetrad are thus projected, and their motion relative to the comoving observer neatly stated. Finally, the physical identification of the normals and the curvatures obtains in terms of three-dimensional kinematics as seen by the instantaneous comoving observer.  相似文献   

11.
A generalized Riemannian geometry is studied where the metric tensor is replaced by a matrix g of metrics. In this context new geometric quantities arise, which are trivial in ordinary Riemannian geometry. An application of this formalism to many-body alignments in general relativity is proposed, where the sub-constituents of the overall gravitational field are described by the components of g. The mutual gravitational interactions between the individual particles are encoded in specific tensors. In particular, very specific approximation schemes for Einstein’s field equations may be considered, which exclusively approximate those terms in the field equations which are due to interactions. The Newtonian limit as well as the first post-Newtonian approximation of the presented formalism is studied in order to display the interpretability of the presented formalism in terms of many-body alignments and in order to deduce a physical interpretation of the new geometric quantities.  相似文献   

12.
In this paper it is shown that in general relativity the theory of motion of quadrupole test particles (QTP's) can be used to describe the energy and angular momentum absorption by detectors of gravitational waves. By specifying the form of the quadrupole moment tensor Taub's [7] equations of motion of QTP's are simplified. In these equations the terms describing the change of the mass and of the angular momentum of a QTP due to external gravitational waves are found to occur. The limiting case of the flat space-time is also briefly discussed.  相似文献   

13.
The theory of direct interparticle gravitational interaction is constructed, based on an action principle of the Fokker type, including many-particle interactions. The action is defined in a background space-time implying the requirement of a possibility to represent the equations of motion of a test particle in the form of geodesic equations in an effective Riemannian metric in any order of the gravitational constantk. It is pointed out that this metric satisfies identically the Einstein equations on each step of the iteration procedure. The background metric must satisfy the condition . In the first approximation the absorber theory of gravitational radiation is proved.  相似文献   

14.
15.
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.  相似文献   

16.
Based on a generalized Yang-Mills framework, gravitational and strong interactions can be unified in analogy with the unification in the electroweak theory. By gauging T (4) × [SU (3)] color in flat space-time, we have a unified model of chromo-gravity with a new tensor gauge field, which couples universally to all gluons, quarks and anti-quarks. The space-time translational gauge symmetry assures that all wave equations of quarks and gluons reduce to a Hamilton-Jacobi equation with the same ’effective Riemann metric tensors’ in the geometric-optics (or classical) limit. The emergence of ef f ective metric tensors in the classical limit is essential for the unified model to agree with experiments. The unified model suggests that all gravitational, strong and electroweak interactions appear to be dictated by gauge symmetries in the generalized Yang-Mills framework.  相似文献   

17.
Given a curved space-time with a metric tensorg ij, Maxwell's equations may be written as if they were valid in a flat space-time in which there is an optical medium with a constitutive equation.When optical phenomena are considered, this medium turns out to be equivalent to the gravitational field. Optical phenomena in various gravitational fields are analysed and we find that the language of classical optics for the equivalent medium is as suitable as that of Riemannian geometry.This work was started at the Department of Applied Mathematics and Theoretical Physics, Cambridge, England.  相似文献   

18.
In this paper the dynamical equations for an elastic deformable body in the first post-Newtonian approximation of Einstein theory of gravity are derived in rotating spherical coordinates. The unperturbed rotating body (the relaxed ground state) is described as uniformly rotating, stationary and axisymmetric configuration in an asymptotically flat space-time manifold. Deviations from the equilibrium configuration are described by means of a displacement field. By making use of the schemes developed by Damour, Soffel and Xu, and by Carter and Quintana we calculate the post-Newtonian Lagrangian strain tensor and symmetric trace-free shear tensor. Considering the Euler variations of Einstein's energy-momentum conservation law, we derive the post- Newtonian energy equation and Euler equations of elastic deformable bodies in rotating spherical coordinates.  相似文献   

19.
We consider the metric exterior to a charged dilaton black hole in a de Sitter universe. We study the motion of a test particle in this metric. Conserved quantities are identified and the Hamilton–Jacobi method is employed for the solutions of the equations of motion. At large distances from the black hole the Hubble expansion of the universe modifies the effective potential such that bound orbits could exist up to an upper limit of the angular momentum per mass for the orbiting test particle. We then study the phenomenon of strong field gravitational lensing by these black holes by extending the standard formalism of strong lensing to the non-asymptotically flat dilaton-de Sitter metric. Expressions for the various lensing quantities are obtained in terms of the metric coefficients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号