首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this paper is to define an (n–1)-cocycle onGL n() with values in a certain space of distributions on . Here f denotes the ring of finite adèlesof , and the distributions take values in the Laurent series((z1...,zn)). This cocycle can be used to evaluate special valuesof Artin L-functions on number fields at negative integers.The construction generalizes that of Solomon in the case n=2.  相似文献   

2.
3.
Let be a singular cardinal of regular uncountable cofinality. Let {(): < } be a continuous increasing sequence withlimit , and let =()+(), < be regular cardinals. Let I be a normal ideal on , and assume that the reduced product</I admits a cofinal -scale of ordinal functions. Then +, where =||||I is the I-norm of .  相似文献   

4.
Soient F un corps commutatif localement compact non archimédienet un caractère additif non trivial de F. Soient unereprésentation du groupe de Weil–Deligne de F,et sa contragrédiente. Nous calculons le facteur (, , ). De manière analogue, nous calculons le facteur (x, , ) pour toute représentationadmissible irréductible de GLn(F). En conséquence,si F est de caractéristique nulle et si et se correspondentpar la correspondance de Langlands construite par M. Harris,ou celle construite par les auteurs, alors les facteurs (, , s) et (x, , s) sont égaux pour tout nombre complexe s. Let F be a non-Archimedean local field and a non-trivial additivecharacter of F. Let be a representation of the Weil–Delignegroup of F and its contragredient representation. We compute (, , ). Analogously, we compute (x, , ) for all irreducible admissible representations of GLn(F).Consequently, if F has characteristic zero, and , correspondvia the Langlands correspondence established by M. Harris orthe correspondence constructed by the authors, then we have(, , s) = (x, , s) for all sC. 1991 Mathematics Subject Classification22E50.  相似文献   

5.
In this paper, the behaviour of the positive eigenfunction of in u| = 0, p > 1, isstudied near its critical points. Under some convexity and symmetryassumptions on , is seen to have a unique critical point atx = 0; also, the behaviour of both and is determined nearby.Positive solutions u to some general problems –pu = f(u)in , u| = 0, are also considered, with some convexity restrictionson u. 2000 Mathematics Subject Classification 35B05 (primary),35J65, 35J70 (secondary).  相似文献   

6.
Let be a bounded connected open set in RN, N 2, and let –0be the Dirichlet Laplacian defined in L2(). Let > 0 be thesmallest eigenvalue of –, and let > 0 be its correspondingeigenfunction, normalized by ||||2 = 1. For sufficiently small>0 we let R() be a connected open subset of satisfying Let – 0 be the Dirichlet Laplacian on R(), and let >0and >0 be its ground state eigenvalue and ground state eigenfunction,respectively, normalized by ||||2=1. For functions f definedon , we let Sf denote the restriction of f to R(). For functionsg defined on R(), we let Tg be the extension of g to satisfying 1991 Mathematics SubjectClassification 47F05.  相似文献   

7.
We prove that the crossed product C*-algebra C*r(, ) of a freegroup with its boundary sits naturally between the reducedgroup C*-algebra C*r and its injective envelope I(C*r). In otherwords, we have natural inclusion C*r C*r(, ) I(C*r) of C*-algebras.  相似文献   

8.
Using an upper solution we obtain a bound from above for theheat kernel (x,y,t) for a region which is star-shaped withrespect to one of the points, say y. The estimate is for theNeumann problem and holds for short times. The form of the boundis moreover, for x\Y(y), Here Y(y) is a closed subset of RNwith measure zero, d(x,y) is the minimum distance between xand y via the boundary :d(x,y) = infZ(|x-z| + |y-z|), and f(.,y)is a positive function, continuous away from Y, and equal tounity on .  相似文献   

9.
Let be an infinite cardinal and let G = 2. Now let β Gbe the Stone–ech compactification of G as a discrete semigroup,and let =<cβ G {xG\{0}:minsupp (x)}. We show that thesemigroup contains no nontrivial finite group.  相似文献   

10.
A Banach algebra a is AMNM if whenever a linear functional on a and a positive number satisfy |(ab)–(a)(b)|||a||·||b||for all a, b a, there is a multiplicative linear functional on a such that ||–||=o(1) as 0. K. Jarosz [1] asked whetherevery Banach algebra, or every uniform algebra, is AMNM. B.E. Johnson [3] studied the AMNM property and constructed a commutativesemisimple Banach algebra that is not AMNM. In this note weconstruct uniform algebras that are not AMNM. 1991 MathematicsSubject Classification 46J10.  相似文献   

11.
Let be Fejér's sine polynomial. We prove the following statements.
  1. The inequality holds for all x, y (0, ) with x + y < if and only if 0 and + rß 1.
  2. The converse of the above inequality is valid for allx, y (0, ) with x + y < if and only if 0 and + rß 1.
  3. For all n N and x, y [0, ] we have . Both bounds are best possible.
2000 Mathematics Subject Classification 42A05, 26D05 (primary),39B62 (secondary).  相似文献   

12.
Let G be a transitive permutation group on a set such that,for , the stabiliser G induces on each of its orbits in \{}a primitive permutation group (possibly of degree 1). Let Nbe the normal closure of G in G. Then (Theorem 1) either N factorisesas N=GG for some , , or all unfaithful G-orbits, if any exist,are infinite. This result generalises a theorem of I. M. Isaacswhich deals with the case where there is a finite upper boundon the lengths of the G-orbits. Several further results areproved about the structure of G as a permutation group, focussingin particular on the nature of certain G-invariant partitionsof . 1991 Mathematics Subject Classification 20B07, 20B05.  相似文献   

13.
Bull London Math. Soc, 4 (1972), 370–372. The proof of the theorem contains an error. Before giving acorrect proof, we state two lemmas. LEMMA 1. Let K/k be a cyclic Galois extension of degree m, let generate Gal (K/k), and let (A, I, ) be defined over K. Supposethat there exists an isomorphism :(A,I,) (A, I, ) over K suchthat vm–1 ... = 1, where v is the canonical isomorphism(Am, Im, m) (A, I, ). Then (A, I, ) has a model over k, whichbecomes isomorphic to (A, I, ) over K. Proof. This follows easily from [7], as is essentially explainedon p. 371. LEMMA 2. Let G be an abelian pro-finite group and let : G Q/Z be a continuous character of G whose image has order p.Then either: (a) there exist subgroups G' and H of G such that H is cyclicof order pm for some m, (G') = 0, and G = G' x H, or (b) for any m > 0 there exists a continuous character m ofG such that pm m = . Proof. If (b) is false for a given m, then there exists an element G, of order pr for some r m, such that () ¦ 0. (Considerthe sequence dual to 0 Ker (pm) G pm G). There exists an opensubgroup Go of G such that (G0) = 0 and has order pr in G/G0.Choose H to be the subgroup of G generated by , and then aneasy application to G/G0 of the theory of finite abelian groupsshows the existence of G' (note that () ¦ 0 implies that is not a p-th. power in G). We now prove the theorem. The proof is correct up to the statement(iv) (except that (i) should read: F' k1 F'ab). To removea minor ambiguity in the proof of (iv), choose to be an elementof Gal (F'ab/k2) whose image $$\stackrel{\&macr;}{\sigma}$$ in Gal (k1/k2) generates this last group. The error occursin the statement that the canonical map v : AP A acts on pointsby sending ap a; it, of course, sends a a. The proof is correct, however, in the case that it is possibleto choose so that p = 1 (in Gal (F'/k2)). By applying Lemma 2 to G = Gal (F'ab/k2) and the map G Gal(k1/k2) one sees that only the following two cases have to beconsidered. (a) It is possible to choose so that pm = 1, for some m, andG = G' x H where G' acts trivially on k1 and H is generatedby . (b) For any m > 0 there exists a field K, F'ab K k1 k2is a cyclic Galois extension of degree pm. In the first case, we let K F'ab be the fixed field of G'.Then (A, I, ), regarded as being defined over K, has a modelover k2. Indeed, if m = 1, then this was observed above, butwhen m > 1 the same argument applies. In the second case, let : (A, I, ) (A$$\stackrel{\&macr;}{\sigma}$$, I$$\stackrel{\&macr;}{\sigma }$$, $$\stackrel{\&macr;}{\sigma}$$) be an isomorphism defined over k1 and let v ... p–1 = µ(R). If is replaced by for some Autk1((A, I, )) then is replacedby P. Thus, as µ(R) is finite, we may assume that pm–1= 1 for some m. Choose K, as in (b), to be of degree pm overk2. Let m be a generator of Gal (K/k2) whose restriction tok1 is $$\stackrel{\&macr;}{\sigma }$$. Then : (A, I, ) (A$$\stackrel{\&macr;}{\sigma }$$, I$$\stackrel{\&macr;}{\sigma}$$, $$\stackrel{\&macr;}{\sigma }$$ = (A$$\stackrel{\&macr;}{\sigma}$$m, I$$\stackrel{\&macr;}{\sigma }$$m, $$\stackrel{\&macr;}{\sigma}$$m is an isomorphism defined over K and v mpm–1, ... m =pm–1 = 1, and so, by) Lemma 1, (A, I, ) has a model overk2 which becomes isomorphic to (A, I, over K. The proof may now be completed as before. Addendum: Professor Shimura has pointed out to me that the claimon lines 25 and 26 of p. 371, viz that µ(R) is a puresubgroup of R*t, does not hold for all rings R. Thus this condition,which appears to be essential for the validity of the theorem,should be included in the hypotheses. It holds, for example,if µ(R) is a direct summand of µ(F).  相似文献   

14.
Logarithmic Convexity for Supremum Norms of Harmonic Functions   总被引:1,自引:0,他引:1  
We prove the following convexity property for supremum normsof harmonic functions. Let be a domain in Rn, 0 and E a subdomainand a compact sebset of ,respectively. Then there exists a constant = (E, 0, ) (0, 1) such that for all harmonic functions u on, the inequality is valid.The case of concentric balls E plays a key role in the proof.For positive harmonic funcitons ono osuch balls, we determinethe sharp constant in the inequlity.  相似文献   

15.
Let s: QQ be the Dedekind sum, given by when gcd(h,k)=1. Then for every rational 1/12there are infinitely many rational x such that s(x)=x. Also,the fixed points of s are dense in the real line. 2000 MathematicsSubject Classification 11F20.  相似文献   

16.
Let = 2cos (/5) and let []. Denote the normaliser ofG0() of the Hecke group G5 in PSL2() by N(G0()). Then N(G0())= G0(/h), where h is the largest divisor of 4 such that h2 divides. Further, N(G0())/G0() is either 1 (if h = 1), 2 x 2 (if h= 2) or 4 x 4 (if h = 4).  相似文献   

17.
We show that if is a codimension-one hyperbolic attractor fora Cr diffeomorphism f, where 2 r , and f is not Anosov, thenthere is a neighborhood of f in Diffr(M) and an open and denseset of such that any g has a trivial centralizer on thebasin of attraction for .  相似文献   

18.
Let N be a bounded open set and C( ). Assume that has an extensionC() such that H–1().Then by the Riesz representation theorem there exists a unique

We show that u+ coincides with the Perron solutionof the Dirichlet problem

This extends recent results by Hildebrandt [Math. Nachr. 278(2005), 141–144] and Simader [Math. Nachr. 279 (2006),415–430], and also gives a possible answer to Hadamard'sobjection against Dirichlet's principle.  相似文献   

19.
Let X be a compact space,µ a Borel probability measureon X, T: X X a measure preserving continuous transformationand g: X R a continuous function. Then for some yX, This Lemma is used to give an alternative proof of a resultby Ruzsa [6], which implies the following extension of a resultof Bergelson [1]. If E N satisfies then there exists a set N such that n–1|[1,n]| (E) for all, n 1, and any finite subset{1, ... k} satisfies Ø. 7 Moria St., Ramat Hasharon, Israel  相似文献   

20.
Bounds for the Independence Number of Critical Graphs   总被引:1,自引:0,他引:1  
In 1968 Vizing conjectured that any independent vertex set ofan edge-chromatic critical graph G contains at most half ofthe vertices of G, that is, (G|(G)|). Let be the maximum vertexdegree in a critical graph. For each , we determine c() suchthat (G)c()|V)|. 1991 Mathematics Subject Classification 05C15,05C70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号