首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Addition of [Mo(V)2O2S2(edt)2]2- (edt =1,2-ethanedithiolate) to acetonitrile and/or methanol solutions of MnII containing bipyridines [4,4'-trimethylenedipyridine (TDP), 4,4'-bipyridine (4,4'-bpy), 2,2'-bipyridine (2,2'-bpy)] or 15-crown-5 produces three new heterometallic cluster coordination polymers, [Mn2[Mo2O2S2(edt)2]2(TDP)3(CH3OH)2(NCMe)2].3CH3OH.0.25MeCN (1), [Mn(TDP)2(H2O)2]2+[Mn[Mo2O2S2(edt)2)2(TDP)2]]2-.6CH3OH (2), [Mn[Mo2O2S2(edt)2](TDP)2(CH3OH)(H2O)].CH3OH (3), and three new multinuclear clusters, [Mn[Mo2O2S2(edt)2](4,4'-bpy)(CH3OH)4].0.5(4,4'-bpy) (4), [Mn[Mo2O2S2(edt)2](2,2'-bpy)2].2CH3OH (5), and (NEt4)2[Mn(15-crown-5)[Mo2O2S2(edt)2]2] (6). All compounds were characterized by X-ray crystallography. The coordination mode of Mn in these compounds depends on the ligands and the crystallization conditions. Compound 2 readily converts to 1 or 3 depending on the reaction and solvent conditions. Compounds 1 and 2 were analyzed using thermogravimetric analysis combined with mass spectroscopy (TG-MS) in the temperature range 25-500 degrees C. The room-temperature magnetic moments for compounds 1-6 were determined.  相似文献   

2.
The reactions of new chiral organic ligands trimesoyltri(L-alanine) (L-TMTAH(3)) or trimesoyltri(D-alanine) (D-TMTAH(3)) with transition metal salts in the presence of an ancillary ligand of 4,4'-bipyridine gave two pairs of three dimensional frameworks [Co(3)(L-TMTA)(2)(4,4'-bpy)(4)]·28H(2)O (1), [Co(3)(D-TMTA)(2)(4,4'-bpy)(4)]·28H(2)O (2) [Ni(3)(L-TMTA)(2)(4,4'-bpy)(4)]·2C(2)H(5)OH·14H(2)O (3) and [Ni(3)(D-TMTA)(2)(4,4'-bpy)(4)]·2C(2)H(5)OH·14H(2)O (4). These compounds were characterized by elemental analysis, IR, and X-ray powder diffraction analysis and the structures of 1-3 were determined from X-ray single crystal diffraction analysis. Complexes 1-4 feature linear trinuclear secondary building blocks [M(3)(COO)(4)](2+) formed via the connection of three metal ions by four carboxylato groups from four TMTA(3-) ligands. Every adjacent two linear trinuclear secondary building blocks are linked by one and three 4,4'-bipyridine molecules along the a and c axis, respectively, to form two-dimensional sheets, which are further connected by TMTA(3-) ligands to construct a porous three dimensional framework with one-dimensional channels. Compound 3 was taken as an example to investigate the adsorption properties of compounds 1-4. It revealed a saturated hydrogen uptake of 216.6 cm(3) g(-1) (2.0 wt%) at 11.1 atm measured at 77 K, a maximum CO(2) uptake of 119.4 cm(3) g(-1) (23.5 wt%) at 19.5 atm measured at 298 K and a saturated CH(4) uptake of 77.8 cm(3) g(-1) (5.6 wt%) at 27.1 atm measured at 298 K. The magnetic studies of complexes 1 and 3 indicate the presence of antiferromagnetic interactions between the metal ions in the two compounds.  相似文献   

3.
The intercalation of fac-[(4,4'-bpy)Re(I)(CO)3(dppz)]+ (dppz = dipyridyl[3,2-a:2'3'-c]phenazine) in polynucleotides, poly[dAdT]2 and poly[dGdC]2, where A = adenine, G = guanine, C = cytosine and T = thymine, is a major cause of changes in the absorption and emission spectra of the complex. A strong complex-poly[dAdT]2 interaction drives the intercalation process, which has a binding constant, Kb approximately 1.8 x 10(5) M(-1). Pulse radiolysis was used for a study of the redox reactions of e(-)(aq), C*H(2)OH and N3* radicals with the intercalated complex. These radicals exhibited more affinity for the intercalated complex than for the bases. Ligand-radical complexes, fac-[(4,4'-bpy*)Re(I)(CO)3(dppz)] and fac-[(4,4'-bpy)Re(I)(CO)3(dppz *)], were produced by e(-)(aq) and C*H(2)OH, respectively. A Re(II) species, fac-[(4,4'-bpy)Re(II)(CO)3(dppz)](2+), was produced by N3* radicals. The rate of annihilation of the ligand-radical species was second order on the concentration of ligand-radical while the disappearance of the Re(II) complex induced the oxidative cleavage of the polynucleotide strand.  相似文献   

4.
Yang E  Zhang J  Li ZJ  Gao S  Kang Y  Chen YB  Wen YH  Yao YG 《Inorganic chemistry》2004,43(21):6525-6527
The hydrothermal reaction of mellitic acid, 4,4'-bipydine, and Cu(CH(3)COO)(2).H(2)O gave rise to a novel 3D supramolecular architecture interpenetrated by three types of coordination polymer motifs. Two independent [[Cu(2)(mellitate)(4,4'-bpy)(H(2)O)(2)](2)(-)] 3D polymers incorporating helical substructures were interwoven into a 3D network with double-stranded helical tubes that host 1D linear polymers [Cu(4,4'-bpy)(H(2)O)(4)](2+)](n).  相似文献   

5.
A new polydentate ligand 4,4'-bipyridazine (4,4'-bpdz) was prepared by employing inverse electron demand cycloaddition of 1,2,4,5-tetrazine. A unique combination of structural simplicity, ampolydentate character and efficient donor properties towards Cu(I), Cu(II) and Zn(II) provide wide new possibilities for the synthesis of coordination polymers incorporating the 4,4'-bpdz module either as a bi-, tri- or tetradentate connector between the metal ions. 1D coordination polymers Cu(2)(4,4'-bpdz)(CH(3)CO(2))(4) x 4H(2)O and Zn(4,4'-bpdz)(NO(3))(2), and interpenetrated (4,4)-nets in [Cu(4,4'-bpdz)(2)(H(2)O)(2)]S(2)O(6) were closely related to 4,4'-bipyridine compounds. 1D "ladder-like" polymer Cu(2)(4,4'-bpdz)(3)(CF(3)CO(2))(4) and the unprecedented 3D binodal net ({8(6)}{6(3);8(3)}) in [Cu(3)(4,4'-bpdz)(6)(H(2)O)(4)](BF(4))(6) x 6H(2)O were based upon a combination of linear and angular organic bridges. Complex [Cu(3)(OH)(2)(4,4'-bpdz)(3)(H(2)O)(2){CF(3)CO(2)}(2)](CF(3)CO(2))(2) x 2H(2)O has a "NbO-like" 3D topology incorporating discrete dihydroxotricopper(II) clusters linked by tri- and tetradentate ligands. The tetradentate function of the 4,4'-bpdz ligand was especially relevant for copper(I) complexes, which adopt layered Cu(2)X(2)(4,4'-bpdz) (X = Cl, Br) or 3D chiral framework (X = I) structures based upon infinite (CuX)(n) chains. The electron deficient character of the ligand was manifested by short anion-pi interactions (O-pi 3.02-3.20; Cl-pi 3.35 A), which may be involved as a factor for controlling the supramolecular structure.  相似文献   

6.
The Lewis acidic pincer with a labile triflate ligand, viz. [Pd(OTf)(PCP)] (PCP = (-)CH(CH(2)CH(2)PPh(2))(2)) was prepared from [PdCl(PCP)] with AgOTf. It reacts readily with neutral bidentate ligands [L = 4,4'-bipyridine (4,4'-bpy) and 1,1'-bis(diphenylphosphino)ferrocene (dppf)] to give dinuclear PCP pincers [{Pd(PCP)}(2)(micro-L)][OTf](2) (L = 4,4'-bpy, 2; dppf,3). [PdCl(PCP)] also reacts with 4-mercaptopyridine in the presence of KOH to give a Lewis basic pincer with a free pyridine functional group [Pd(4-Spy)(PCP)]4. Its metalloligand character is exemplified by the isolation of an asymmetric dinuclear double-pincer complex [{Pd(PCP)}(2)(micro-4-Spy)][PF(6)] 6 bridged by an ambidentate pyridinethiolato ligand. Complexes 1, 2, 3, 4 and 6 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

7.
Zhang J  Li ZJ  Kang Y  Cheng JK  Yao YG 《Inorganic chemistry》2004,43(25):8085-8091
Three novel BPTC complexes, (H(2)BPTC)(4,4'-H(2)bpy)H(2)O (1), [Cd(2)Cu(HBPTC)(2)(mu(2)-4,4'-bpy)(2)(4,4'-bpy)(2)(H(2)O)(2)](n) (2), and [Co(3)(HBPTC)(2)(mu(2)-4,4'-bpy)(3)(H(2)O)(4)](n).2nH(2)O (3) (BPTC = 3,3',4,4'-benzophenone-tetracarboxylate and bpy = bipyridine), were hydrothermally synthesized. Complex 1, which is obtained as a coproduct during the syntheses of complexes 2 and 3, features a 2-D layered strong hydrogen bonding network with 2-fold interpenetration. Complex 2 has an unusual 2-D double-layered motif, which is linked together by Cu atoms in a face-to-face manner. It exhibits nanosized channels filled by 4,4'-bpy ligands. Three six-coordinated Co atoms in 3 are interlinked by HBPTC ligands to form a 2-D grid structure, which is further sustained by rigid 4,4'-bpy ligands into a 3-D open framework similar to CdSO(4) with the BPTC moieties situated in the tunnels. The thermal stabilities of complexes 1-3 were examined. The photoluminescence properties of complexes 1-2 and temperature-dependent magnetic susceptibility for 3 were also studied.  相似文献   

8.
Two new three-dimensional nickel coordination polymers, [Ni3(BTC)2(4,4'-bpy)2(H2O)5].1.5H2O (1) and [Ni(PDB)(4,4'-bpy)].0.5H2O (2)(4,4'-bpy = bipyridine, BTC = 1,2,4-benzenetricarboxylate, PDB = pyridine-3,4-dicarboxylate), have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TGA, and single crystal X-ray diffraction. Both compounds contain 2D scaffolding motifs, and most interestingly adjacent scaffolds are connected by infinite helical chains into unique three-dimensional mesomeric networks. Moreover, temperature-dependent magnetic susceptibilities for the two compounds were studied, and ferromagnetic interactions through syn-anti carboxylate bridges between Ni sites have been observed.  相似文献   

9.
A porous bilayered open coordination polymer [Zn(4,4'-bpy)(2)(FcphSO(3))(2)](n) (1; FcphSO(3)Na=m-ferrocenyl benzenesulfonate), has been assembled from Zn(NO(3))(2), m-ferrocenyl benzenesulfonate, and the bridging ligand 4,4'-bipyridine (4,4'-bpy). Ion-exchange induced products [Cd(0.6)Zn(0.4)(4,4'-bpy)(2)(FcphSO(3))(2)](n) (2), [Zn(0.75)Pb(0.25)(4,4'-bpy)(2)(FcphSO(3))(2)](n) (3), and [Cu(0.5)Zn(0.5)(4,4'-bpy)(2)(FcphSO(3))(2)](n) (4) could be obtained directly by suspending a big single crystal of 1 into concentrated solutions of Cd(NO(3))(2), Pb(NO(3))(2), and Cu(NO(3))(2), respectively. Most importantly, the big single crystal of 1 could be partly regenerated after immersion into concentrated aqueous solutions of Zn(NO(3))(2). On the other hand, powdered 1 could also be used as a metal ion adsorbent because of the well-defined pore size and pore shape. Ion exchange takes place along with the process of ion sorption. The big single crystal of 1 removes harmful metal ions by means of ion exchange, whereas powdered 1 removes toxic metal ions mainly through ion sorption. Also, compound 1 could be employed as a multi-ion analysis fluorescent probe to detect dangerous metal ions, such as Pb(2+), Cd(2+), Ag(+), and Cu(2+). The compounds described in this study may have potential applications in the design of new molecular devices.  相似文献   

10.
Reaction of [V(IV)OCl(2)(THF)(2)] in aqueous solution with 2 equiv of AgBF(4) or AgSbF(6) and then with 2 equiv of 2,2'-bipyridine (bipy), 4,4'-di-tert-butyl-2,2'-bipyridine (4,4'-dtbipy), or 4,4'-di-methyl-2,2'-bipyridine (4,4'-dmbipy) affords compounds of the general formula cis-[V(IV)O(OH)(L(NN))(2)]Y [where L(NN) = bipy, Y = BF(4)(-) (1), L(NN) = 4,4'-dtbipy, Y = BF(4)(-) (2.1.2H(2)O), L(NN) = 4,4'-dmbipy, Y = BF(4)(-) (3.2H(2)O), and L(NN) = 4,4'-dtbipy, Y = SbF(6)(-) (4)]. Sequential addition of 1 equiv of Ba(ClO(4))(2) and then of 2 equiv of bipy to an aqueous solution containing 1 equiv of V(IV)OSO(4).5H(2)O yields cis-[V(IV)O(OH)(bipy)(2)]ClO(4) (5). The monomeric compounds 1-5 contain the cis-[V(IV)O(OH)](+) structural unit. Reaction of 1 equiv of V(IV)OSO(4).5H(2)O in water and of 1 equiv of [V(IV)OCl(2)(THF)(2)] in ethanol with 2 equiv of bipy gives the compounds cis-[V(IV)O(OSO(3))(bipy)(2)].CH(3)OH.1.5H(2)O (6.CH(3)OH.1.5H(2)O) and cis-[V(IV)OCl(bipy)(2)]Cl (7), respectively, while reaction of 1 equiv of [V(IV)OCl(2)(THF)(2)] in CH(2)Cl(2) with 2 equiv of 4,4'-dtbipy gives the compound cis-[V(IV)OCl(4,4'-dtbipy)(2)]Cl.0.5CH(2)Cl(2) (8.0.5CH(2)Cl(2)). Compounds cis-[V(IV)O(BF(4))(4,4'-dtbipy)(2)]BF(4) (9), cis-[V(IV)O(BF(4))(4,4'-dmbipy)(2)]BF(4) (10), and cis-[V(IV)O(SbF(6))(4,4'-dtbipy)(2)]SbF(6) (11) were synthesized by sequential addition of 2 equiv of 4,4'-dtbipy or 4,4'-dmbipy and 2 equiv of AgBF(4) or AgSbF(6) to a dichloromethane solution containing 1 equiv of [V(IV)OCl(2)(THF)(2)]. The crystal structures of 2.1.2H(2)O, 6.CH(3)OH.1.5H(2)O, and 8.0.5CH(2)Cl(2) were demonstrated by X-ray diffraction analysis. Crystal data are as follows: Compound 2.1.2H(2)O crystallizes in the orthorhombic space group Pbca with (at 298 K) a = 21.62(1) A, b = 13.33(1) A, c = 27.25(2) A, V = 7851(2) A(3), Z = 8. Compound 6.CH(3)OH.1.5H(2)O crystallizes in the monoclinic space group P2(1)/a with (at 298 K) a = 12.581(4) A, b = 14.204(5) A, c = 14.613(6) A, beta = 114.88(1) degrees, V = 2369(1), Z = 4. Compound 8.0.5CH(2)Cl(2) crystallizes in the orthorhombic space group Pca2(1) with (at 298 K) a = 23.072(2) A, b = 24.176(2) A, c = 13.676(1) A, V = 7628(2) A(3), Z = 8 with two crystallographically independent molecules per asymmetric unit. In addition to the synthesis and crystallographic studies, we report the optical, infrared, magnetic, conductivity, and CW EPR properties of these oxovanadium(IV) compounds as well as theoretical studies on [V(IV)O(bipy)(2)](2+) and [V(IV)OX(bipy)(2)](+/0) species (X = OH(-), SO(4)(2)(-), Cl(-)).  相似文献   

11.
This article describes a unique synthetic route that enables a neutral mono(dithiolene)metal unit, {Zn(dmit)}, to link with three different organic molecules, resulting in the isolation of a new class of neutral coordination polymers. The species {Zn(dmit)} coordinates with 4,4'-bipyridine (4,4'-bpy), trans-1,2-bis(4-pyridyl)ethene (4,4'-bpe) and 1,4-bis(imidazole-1-ylmethyl)-benzene (bix) as linkers giving rise to the formation of coordination polymers [Zn(dmit)(4,4'-bpy)](n) (1), [Zn(dmit)(4,4'-bpe)](n) (2) and [Zn(dmit)(bix)](n) (3) respectively. Compounds 1-3 were characterized by elemental analyses, IR, diffuse reflectance and single crystal X-ray diffraction studies. Compounds 1 and 3 crystallize in the monoclinic space group P2(1)/n, whereby compound 2 crystallizes in triclinic space group P1[combining macron]. In the present study, we chose three linkers 4,4'-bpy, 4,4'-bpe and bix (see , respectively, for their structural drawings), that differ in terms of their molecular dimensions. The crystal structures of compounds 1-3 are described here in terms of their supramolecular diversities that include π-π interactions, not only among aromatic stacking (compounds 1 and 3), but also between an aromatic ring and an ethylenic double bond (compound 2). The electronic absorption spectroscopy of compounds 1-3 support these intermolecular π-π interactions.  相似文献   

12.
Four hybrid inorganic-metalorganic compounds containing copper(II)-monosubstituted Keggin polyoxotungstates, K3[Cu(I)(4,4'-bpy)]3[SiW11Cu(II)O39].11H2O (1), (paraquat)3[SiW11Cu(II)O39].6H2O (2; paraquat = N,N'-dimethyl-4,4'-bipyridinium), K3[Cu(I)(4,4'-bpy)]3[GeW11Cu(II)O39].11H2O (3), and Na2[Cu(I)(4,4'-bpy)]3[PW11Cu(II)O39(H2O)].4H2O (4), have been synthesized under autogenous pressure hydrothermal conditions and characterized by elemental analysis and infrared spectroscopy (FT-IR). The crystal structures of 1, 2, and 4 have been established by single-crystal X-ray diffraction. The crystal packings are characterized by the presence of monodimensional extended entities: either the polymeric polyanion [SiW11CuO39]n(6n-) (2), the cationic [Cu(4,4'-bpy)]n(n+) chain (4), or both simultaneously as in compound 1, where the inorganic and metalorganic sublattices are mutually perpendicular. To asses the influence of packing in the copper(I) complex structural diversity found in compounds 1 and 4, a search in the CSD database has been performed and the resulting geometrical features have been analyzed and compared with experimental crystallographic data and DFT calculations.  相似文献   

13.
A combination of framework-builder (Cu(II) ion and 4,4'-bipyridine (4,4'-bpy) ligand) and framework-regulator (AF(6) type anions; A = Si, Ge, and P) provides a series of novel porous coordination polymers. The highly porous coordination polymers ([Cu(AF(6))(4,4'-bpy)(2)].8H(2)O)(n)(A = Si (1a.8H(2)O), Ge (2a.8H(2)O)) afford robust 3-dimensional (3-D), microporous networks (3-D Regular Grid) by using AF(6)(2-) anions. The channel size of these complexes is ca. 8 x 8 A(2) along the c-axis and 6 x 2 A(2) along the a- or b-axes. When compounds 1a.8H(2)O or 2a.8H(2)O were immersed in water, a conversion of 3-D networks (1a.8H(2)O or 2a.8H(2)O) to interpenetrated networks ([Cu(4,4'-bpy)(2)(H(2)O)(2)].AF(6))(n)(A = Si (1b) and Ge (2b)) (2-D Interpenetration) took place. This 2-D interpenetrated network 1b shows unique dynamic anion-exchange properties, which accompany drastic structural conversions. When a PF(6)(-) monoanion instead of AF(6)(2)(-) dianions was used as the framework-regulator with another co-counteranion (coexistent anions), porous coordination polymers with various types of frameworks, ([Cu(2)(4,4'-bpy)(5)(H(2)O)(4)].anions.2H(2)O.4EtOH)(n)(anions = 4PF(6)(-) (3.2H(2)O.4EtOH), 2PF(6)(-) + 2ClO(4)(-) (4.2H(2)O.4EtOH)) (2-D Double-Layer), ([Cu(2)(PF(6))(NO(3))(4,4'-bpy)(4)].2PF(6).2H(2)O)(n)(5.2PF(6).2H(2)O) (3-D Undulated Grid), ([Cu(PF(6))(4,4'-bpy)(2)(MeCN)].PF(6).2MeCN)(n)(6.2MeCN) (2-D Grid), and ([Cu(4,4'-bpy)(2)(H(2)O)(2)].PF(6).BF(4))(n) (7) (2-D Grid), were obtained, where the three modes of PF(6)(-) anions are observed. 5.2PF(6).2H(2)O has rare PF(6)(-) bridges. The PF(6)(-) and NO(3)(-) monoanions alternately link to the Cu(II) centers in the undulated 2-D sheets of [Cu(4,4'-bpy)(2)](n)() to form a 3-D porous network. The free PF(6)(-) anions are included in the channels. 6.2MeCN affords both free and terminal-bridged PF(6)(-) anions. 3.2H(2)O.4EtOH, 4.2H(2)O.4EtOH, and 7 bear free PF(6)(-) anions. All of the anions in 3.2H(2)O.4EtOH and 4.2H(2)O.4EtOH are freely located in the channels constructed from a host network. Interestingly, these Cu(II) frameworks are rationally controlled by counteranions and selectively converted to other frameworks.  相似文献   

14.
Reaction of transition metal formate M(HCOO)(2).2H2O (M = Mn, Co, Ni) with 4,4'-bpy (4,4-bipyridine) has led to four new compounds with the formula M(HCOO)2(4,4'-bpy).nH2O (M = Mn, Co (1.Mn, 2.Co), n = 0; M = Co, Ni (3.Co, 4.Ni), n = 5). Compounds 1.Mn and 2.Co are isomorphous and crystallized in the tetragonal crystal system with the chiral space group P4(1)2(1)2. They are of three-dimensional diamondoid structure connected by anti-anti formate with 4,4'-bpy in the cavities of the framework reinforcing the intermetallic connections; the diamond-like net was observed also in their azide analogue (Mn(N3)2(4,4'-bpy)). Compounds 3.Co and 4.Ni are isomorphous also but crystallized in the monoclinic crystal system with the space group Cc. Both structures are uninterpenetrated 3D "CdSO4" type with big channels, constructed by anti-anti formate and 4,4'-bpy. This type of net was not observed in their azide analogue. Residing in the channels, water molecules form a new type of 1D tape constructed by vertex-sharing cyclic pentamers. Magnetic measurements were performed on all of these four compounds. 1.Mn and 2.Co are weak ferromagnets with the critical temperature Tc = 5.3 and 7.4 K, respectively. 3.Co is an antiferromagnet with Neel temperature TN = 3.0 K, and 4.Ni is a weak ferromagnet below 20 K. Hysteresis loop can be observed for 2.Co and 4.Ni at 1.8 K. As an analogue of azide, formate can be used to construct molecular architectures, which structurally and magnetically have great similarities to and also differences from those of azide. This offers a promising method for the design of new molecular architectures with formate.  相似文献   

15.
The hydrothermal synthesis, X-ray crystal structures and thermal and magnetic properties of a layered coordination polymer, [Ni(3.9)Mn(1.1)(μ(3)-OH)(2)(L(I))(2)(H(2)O)(10)]·2H(2)O (1) (L(I) = 1e,2a,4a,5e-cyclohexanetetracarboxylate), and a porous 3D coordination polymer, [Ni(4)(μ(2)-OH)(2)(μ(6)-H(2)L(IV))(2)(pymc)(4,4'-bpy)(H(2)O)(2)](OH)·9H(2)O (2) (pymc = 2-pyrimidinecarboxylate, 4,4'-bpy = 4,4'-bipyridine, L(IV) = 1e,2e,4e,5e-cyclohexanetetracarboxylate), are reported in this paper. The structure of 1 has packed separated layers, each layer being formed of M(3)(μ(3)-OH)(2) chains bridged by M(L(I))(2)via hydrogen bonds. The magnetic properties are characterized by Néel transitions to fully compensated antiferromagnets at 2.9 K and show that 1 is a metamagnet resulting from the ferrimagnetic M(3)(μ(3)-OH)(2) chains and other two metal atoms. Complex 2 is a 3D microporous coordination framework with 2D channels. The conformation of the 1,2,4,5-cyclohexanetetracarboxylate ligands (H(4)L) of complex 2 changes from L(I) (e,a,a,e) to L(IV) (e,e,e,e). The magnetic measurement indicates spin-canted antiferromagnetic behaviour, and the adsorption measurements show that 2 can selectively adsorb CO(2) gas over N(2) gas.  相似文献   

16.
Four three-dimensional non-interpenetrating open coordination frameworks constructed from the CTC ligand (CTC =cis,cis-1,3,5-cyclohexanetricarboxylate) coordinated to metal ions (Mn(II) and Cd(II)): Mn(3)(CTC)(2)(DMF)(2)(1); Cd(3)(CTC)(2)(H(2)O)(3).H(2)O (2); Cd(3)(CTC)(2)(4,4'-bpy)(2)(EG)(2)(3); Cd(3)(CTC)(2)(mu(2)-hmt)(DMF)(C(2)H(5)OH)(H(2)O).2H(2)O (4)(DMF = dimethylformamide and EG = ethylene glycol) have been synthesized by slow evaporation of DMF-C(2)H(5)OH-H(2)O solutions of M(II)(Mn(II) or Cd(II)) and CTC in the presence of the organic bases TEA (triethylamine), TEA, 4,4'-bpy (4,4'-bipyridine) and hmt (hexamethylenetetramine), respectively, and structurally characterized by X-ray crystallography. The polymer constructed by CTC and Mn(II) exhibits a 3-D architecture with 5 x 9 A channels; the polymer formed by CTC and Cd(II) exists a 3-D extended framework with 9 x 9 A channels; wave-like sheet subunits of the polymer are upheld by 4,4'-bpy ligands resulting in a 3-D framework with 4 x 10 A channels; two-fold alternate sheet subunits of the polymer are interlinked by mu(2)-hmt ligands to form a novel 3-D architecture with 7 x 8 A channels. Polymers exhibit their strongest excitation peaks at 391, 390 and 394 nm, respectively, and their main strong emission peaks are at 543, 460 (with a shoulder peak at about 570 nm) and 557 nm, respectively.  相似文献   

17.
Two lactates and four new mixed ligand complexes with formulae Co(lact)2·2H2O, Ni(lact)2·3H2O, Co(4-bpy)(lact)2, Co(2,4'-bpy)2(lact)2, Ni(4-bpy)(lact)2·2H2O and Ni(2,4'-bpy)2(lact)2 (where 4-bpy=4,4'-bipyridine, 2,4'-bpy=2,4'-bipyridine, lact=CH3CH(OH)COO-) were isolated and investigated. The thermal behaviour of compounds was studied by thermal analysis (TG, DTG, DTA). In the case of hydrated complexes thermal decomposition starts with the release of water molecules. The compounds decompose at high temperature to metal(II) oxides in air. A coupled TG-MS system was used to analyse the principal volatile products of thermolysis and fragmentation processes of obtained complexes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Huang LH  Kao HM  Lii KH 《Inorganic chemistry》2002,41(11):2936-2940
A novel vanadium(V) phosphate and the arsenate analogue, [(VO(2))(2)(4,4'-bpy)(0.5)(4,4'-Hbpy)(XO(4))].H(2)O (X = P, As; bpy = bipyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are the first structurally characterized compounds in the vanadium(V)/4,4'-bpy/phosphate (or arsenate) systems. The two compounds are isostructural and crystallize in the triclinic space group P macro (No. 2) with a = 7.9063(3) A, b = 10.2201(4) A, c = 12.1336(5) A, alpha = 113.4652(7) degrees, beta = 95.7231(7) degrees, gamma = 94.4447(7) degrees, and Z = 2 for the phosphate, and a = 7.8843(6) A, b = 10.3686(7) A, c = 12.2606(9) A, alpha = 113.464(1) degrees, beta = 95.560(1) degrees, gamma = 94.585(1) degrees, and Z = 2 for the arsenate. The structure consists of phosphate-bridged vanadium(V) double chains linked through 4,4'-bpy ligands to form a sheet with the monoprotonated 4,4'-Hbpy(+) ligand being coordinated to the metal atom as a pendent group. The (1)H MAS NMR spectrum exhibits four resonances at 14.2, 9.5, 7.2, and 3.7 ppm with an intensity ratio close to 1:6:6:2, corresponding to three different types of protons in 4,4'-bpy and 4,4'-Hbpy(+) and one type of protons in H(2)O. The peak at 14.2 ppm can be assigned to the proton bonded to the pyridine nitrogen atom, which confirms the presence of 4,4'-Hbpy(+).  相似文献   

19.
Reaction of the preorganized strands of ([Cu(II)(mu-4,4'-bpy)](2+))n (4,4'-bpy = 4,4'-bipyridine) with [W(V)(CN)(8)](3)(-) leads to a novel cyano-bridged Cu(II)(3)W(V)(2) complex [Cu(mu-4,4'-bpy)(DMF)(2)][Cu(mu-4,4'-bpy)(DMF)](2)[W(V)(CN)(8)](2).2DMF. 2H(2)O 1. The structure of 1 consists of the expected 2-dimensional grid-type network which is built of infinite ([Cu(II)(mu-4,4'-bpy)](2+))n chains cross-linked by octacyanotungstate units. The Cu(II)-NC-W(V)-CN-Cu(II) linkage exhibits the topology of a 3,2-chain. The skeleton of the layer is additionally stabilized by a hydrogen bond network formed by terminal cyano ligands of the [W(CN)(8)](3-) moiety and water molecules. The distance between the adjacent Cu(3)(II)W(2)(V) chains within the layer is 11.12 A along the a axis. The layers are connected by H-bonds of NCN-NDMF-NCN linkages into 3-D supramolecular architecture. The magnetic properties correspond to a dominant ferromagnetic coupling within the Cu(II)(3)W(V)(2) pentamer units (J = +35(4) cm(-1)) and much weaker effective AF interunit coupling which include both intra- and inter-3,2-chain interactions between pentamers (J' = -0.05(1) cm(-1)).  相似文献   

20.
利用对乙酰氨基苯甲酸(HPABA)和邻菲咯啉(phen)、硝酸铜在DMF/CH3OH/H2O溶液中合成了单核铜配合物[Cu(PABA)(phen)(H2O)2]·(NO3)·H2O(1),然后又和4,4’-联吡啶(4,4’-bpy)、硝酸锌在DMF/CH3OH/H2O溶液中获得配位聚合物{[Zn(PABA)2(4,4’-bpy)]·4H2O}n2)。根据X射线衍射分析结果,配合物1中每个铜离子周围有2个氮原子和3个氧原子与之配位形成畸变的四方锥配位构型,然而在配合物2中,六配位八面体构型的锌离子通过配体4,4’-联吡啶扩展为一维Zigzag型链。分别对这两个配合物的热稳定性和电化学性质进行了研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号