首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We report a facile way of preparing microfluidic channels filled with electrospun functional fibers. Patterned elastic molds were in tight contact with electrospun fiber mats without any leak of the analyte solution. As an example of the simple devices, we demonstrated a microfluidic protein chip selectively purifying histidine‐tagged proteins. Highly mesoporous nitrilotriacetic acid‐functionalized polystyrene (PS‐NTA) fibers were produced by taking advantage of interpenetrating phase separation between PS and PEO during electrospinning. The specific interaction of Ni‐complexed PS‐NTA fibers with histidine enabled us to immobilize only target proteins from highly heterogeneous protein mixtures. The easy process to fabricate functionalized microchannels combined with the high production throughput from electrospinning may greatly contribute to chip‐based chromatographic and bioanalytical devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
《Analytical letters》2012,45(16):2682-2690
This paper describes the development of a portable microfluidic chip based on a surface-enhanced Raman spectroscopy (SERS) sensor for crystal violet analysis. A Y-shape microfluidic chip with a staggered herringbone structure was designed to efficiently mix the analyte and SERS active silver colloid. The subsequent detection of the analyte was performed on the microfluidic chip by a portable Raman system. Compared with other methods, this sensor is easy to operate and is expected to have applications for rapid and sensitive on-site analysis. A good linear correlation over the concentration range of 10 to 750 nM of crystal violet with a correlation coefficient of 0.992 was obtained. The recovery was between 98.6% and 102.9% for crystal violet in river water with relative standard deviations between 2.43% and 4.26%.  相似文献   

3.
Hu Z  Glidle A  Ironside CN  Sorel M  Strain MJ  Cooper J  Yin H 《Lab on a chip》2012,12(16):2850-2857
We have demonstrated a monolithic integrated arrayed waveguide grating (AWG) microspectrometer microfluidic platform capable of fluorescence spectroscopic analysis. The microspectrometer in this proof of concept study has a small (1 cm × 1 cm) footprint and 8 output channels centred on different wavelengths. We show that the signals from the output channels detected on a camera chip can be used to recreate the complete fluorescence spectrum of an analyte. By making fluorescence measurements of (i) mixed quantum dot solutions, (ii) an organic fluorophore (Cy5) and (iii) the propidium iodide (PI)-DNA assay, we illustrate the unique advantages of the AWG platform for simultaneous, quantitative multiplex detection and its capability to detect small spectroscopic shifts. Although the current system is designed for fluorescence spectroscopic analysis, in principle, it can be implemented for other types of analysis, such as Raman spectroscopy. Fabricated using established semiconductor industry methods, this miniaturised platform holds great potential to create a handheld, low cost biosensor with versatile detection capability.  相似文献   

4.
Xia F  Jin W  Yin X  Fang Z 《Journal of chromatography. A》2005,1063(1-2):227-233
A novel electrochemical method with a microfluidic device was developed for analysis of single cells. In this method, cell injection, loading and cell lysis, and electrokinetic transportation and detection of intracellular species were integrated in a microfluidic chip with a double-T injector coupled with an end-channel amperometric detector. A single cell was loaded at the double-T injector on the microfluidic chip by using electric field. Then, the docked cell was lysed by a direct current electric field strength of 220 V/cm. The analyte of interest inside the cell was electrokinetically transported to the detection end of separation channel and was electrochemically detected. External standardization was used to quantify the analyte of interest in individual cells. Ascorbic acid (AA) in single wheat callus cells was chosen as the model compound. AA could be directly detected at a carbon fiber disk bundle electrode. The selectivity of electrochemical detection made the electropherogram simple. The technique described here could, in principle, be applied to a variety of electroactive species within single cells.  相似文献   

5.
《Electrophoresis》2017,38(16):1977-1987
Surface‐enhanced Raman spectroscopy (SERS) is an extremely powerful analytical tool, which not only yields information about the molecular structure of the analyte in the form of characteristic vibrational spectrum but also gives sensitivities approaching those in fluorescence spectroscopy. The SERS measurement on the microfluidic platform provides possibility to manufacture the device with design perfectly fulfilling the needs of the application with minimal sample consumption. This review aims at describing basic strategies for SERS measurement in microfluidic devices published in the last decade and covers current trends in microfluidics with SERS detection in the field of bioanalysis and approaches toward on‐line coupling of liquid‐based separation techniques with SERS detection.  相似文献   

6.
Song W  Yang J 《Lab on a chip》2012,12(7):1251-1254
We present a novel optofluidic differential method for carrying out absorbance spectroscopy of sub-nanolitre volumes of liquid samples on a microfluidic chip. Due to the reduction of liquid volume, the absorbance detection in microfluidics is often hindered by either low sensitivity or complex fabrication. To address this issue, we introduced an optofluidic modulator which can be easily integrated into a PDMS (polydimethylsiloxane) based microfluidic chip. The modulator was controlled by the fluid pressure and the absorbance spectrum of the analyte was obtained by taking differential measurements between the analyte and reference medium. An advantage is that this method doesn't need a complicated fabrication step. It is compatible with conventional microfluidic chips and measurements can be carried out on a normal transmission microscope. The performance of the device was tested by measuring solutions containing methylene blue, with concentrations as low as 13 μM.  相似文献   

7.
This article reports the integration of the fiber optic-particle plasmon resonance (FO-PPR) biosensor with a microfluidic chip to reduce response time and improve detection limit. The microfluidic chip made of poly(methyl methacrylate) had a flow-channel of dimensions 4.0 cm × 900 μm × 900 μm. A partially unclad optical fiber with gold or silver nanoparticles on the core surface was placed within the flow-channel, where the volume of the flow space was about 14 μL. Results using sucrose solutions of various refractive indexes show that the refractive index resolution improves by 2.4-fold in the microfluidic system. The microfluidic chip is capable of delivering a precise amount of biological samples to the detection area without sample dilution. Several receptor/analyte pairs were chosen to examine the biosensing capability of the integrated platform: biotin/streptavidin, biotin/anti-biotin, DNP/anti-DNP, OVA/anti-OVA, and anti-MMP-3/MMP-3. Results show that the response time to achieve equilibrium can be shortened from several thousand seconds in a conventional liquid cell to several hundred seconds in a microfluidic flow-cell. In addition, the detection limit also improves by about one order of magnitude. Furthermore, the normalization by using the relative change of transmission response as the sensor output alleviate the demand on precise optical alignment, resulting in reasonably good chip-to-chip measurement reproducibility.  相似文献   

8.
Chen L  Choo J 《Electrophoresis》2008,29(9):1815-1828
Microfluidic chip devices and their application to sensitive chemical and biological analyses have attracted significant attention over the past decade. The miniaturization of reaction systems offers practical advantages over conventional benchtop systems. In this case, however, a highly sensitive on-chip detection method is important for the monitoring of chemical reactions as well as for the detection of analytes inside the channel because the detection volume in a micrometer-size channel is extremely small. Recently, a surface-enhanced Raman scattering (SERS) technique is being regarded as a potential candidate for the highly sensitive detection of analytes in a microfluidic chip. This review provides a general survey and an in-depth look at recent developments in SERS techniques for the biological/environmental analysis of minute analytes in a microfluidic chip.  相似文献   

9.
Organic polymers offer many advantages as materials for the construction of microfluidic devices but suffer frequently from the limitation that the electrodynamic flow they support can exhibit considerable instability. This article describes a split-channel microfluidic device that can be used to compensate for changes in electroosmotic flow. The design of the separation system divides an analyte plug after injection between two separation channels of differing length. The two channels are later recombined for single point detection, eliminating the need for a scanning optical detection system. The utility of this simple design lies in the fact that the migration time of any analyte can be referenced to its twin in the parallel separation channel. This eliminates the need for a separate electroosmotic marker and allows mobilities measured in multiple devices to be compared quantitatively. Using a model adopted from the literature, the data from the split channel system can be used to precisely account for the drift that characterizes electrophoretic separations made in a polymer chip. The relative standard deviations of the analyte mobilities measured for replicate runs on multiple devices were reduced from values as high as 20% to ca. 1% RSD. This internal standardization procedure also appears to address other sources of drift in the electroosmotic flow (EOF) supported by the polymer microchannel, eliminating the need for careful monitoring of either the temperature or reservoir pH between separation runs.  相似文献   

10.
In this paper, we demonstrate the design of a virtually alignment-free optical setup for use with microfluidic applications involving a layered glass/SU-8/PDMS (polydimethylsiloxane) chip. We show how inexpensive external lenses combined with carefully designed on-chip lenses can be used to couple light from a bulk beam to on-chip waveguides and back into a bulk beam again. Using this setup, as much as 20% of the light coming from the source can be retrieved after passing through the on-chip waveguides. The proposed setup is based on a pin-aided alignment system that makes it possible to change chips in the optical train in only a few seconds with a standard deviation of about 2% in the transmitted power. Furthermore, we demonstrate how these optical setups can be combined with microfluidics to create an on-chip flow cytometer enabling detection and counting of polystyrene particles down to 1 μm at a rate of 100 Hz.  相似文献   

11.
Microfluidic chips combined with surface-enhanced Raman spectroscopy (SERS) offer an outstanding platform for rapid and high-sensitivity chemical analysis. However, it is nontrivial to conveniently form nanoparticle aggregrates (as SERS-active spots for SERS detection) in microchannels in a well-controlled manner. Here, we present a rapid, highly sensitive and label-free analytical technique for determining bovine serum albumin (BSA) on a poly(dimethylsiloxane) (PDMS) microfluidic chip using SERS. A modified PDMS pneumatic valve and nanopost arrays at the bottom of the fluidic microchannel are used for reversibly trapping gold nanoparticles to form gold aggregates, creating SERS-active spots for Raman detection. We fabricated a chip that consisted of a T-shaped fluidic channel and two modified pneumatic valves, which was suitable for fast loading of samples. Quantitative analysis of BSA is demonstrated with the measured peak intensity at 1,615 cm−1 in the surface-enhanced Raman spectra. With our microfluidic chip, the detection limit of Raman can reach as low as the picomolar level, comparable to that of normal mass spectrometry.  相似文献   

12.
The widespread development of microfluidics (microfluidics) has allowed the extension of efficient separations, fluid handling, and hyphenation with many detection modes to a small, portable, highly controllable physico-chemical platform. Surface enhanced Raman spectroscopy (SERS) offers the powerful advantage of obtaining vibrational spectroscopic information about analytes in an aqueous matrix with negligible background. The mating of electrophoretic separations with vibrational spectroscopy on a microfluidic device will allow the chromatographic efficiency of capillary electrophoresis (CE) with the unequivocal analyte "fingerprinting" capability of detailed structural information. By utilizing SERS as a means of detection, this work promises to yield redress for the hindrances of electrophoretic separations, including uncertainty in analyte band identification due to changing migration times as well as compromised detection sensitivity for non-fluorescent analytes. Our work represents the first steps toward developing CE-SERS on a microfluidic platform with a region of novel metal-pliable polymer nanocomposite SERS substrate fabricated directly into the device. The device fabrication material has been extensively employed by the microfluidics community for over five years. SERS detection can be achieved in real time or after the separations, with on-column laser-induced fluorescence employed as a secondary detection mode used for confirmation of efficiencies and band locations.  相似文献   

13.
Surface‐enhanced Raman spectroscopy is a constantly developing analytical method providing not only high‐sensitive quantitative but also qualitative information on an analyte. Thus, it is reasonable that it has been tested as a promising detection method in column separations. Although its implementation in analytical separations is not widespread, some surprising results, like enormous signal enhancement and demonstrations of single‐molecule identifications, proved in only a few special examples, indicate the potential of the method. The high detection sensitivity and selectivity would be of paramount importance in trace analyses of biologically relevant molecules in complex matrices. However, the combination of surface‐enhanced Raman spectroscopy with column separation methods brings two principal issues. Interactions of analytes with metal substrates can cause deteriorations of separations and the detection can be affected by background electrolytes or elution agents. Thus, in principle, this review is on the experimental and methodological solutions to these problems. First, theoretical and practical aspects of Raman scattering, and excitation of surface plasmon in colloid suspensions of nanoparticles and on planar nanostructured substrates are briefly explained. Advances in experimental arrangements of on‐line and at‐line couplings with column liquid phase separation methods, including microfluidic devices, are described together with chosen analytical applications.  相似文献   

14.
15.
Microfluidic technology allows the manipulation of mass-limited samples and when used with cultured cells, enables control of the extracellular microenvironment, making it well suited for studying neurons and their response to environmental perturbations. While matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) provides for off-line coupling to microfluidic devices for characterizing small-volume extracellular releasates, performing quantitative studies with MALDI is challenging. Here we describe a label-free absolute quantitation approach for microfluidic devices. We optimize device fabrication to prevent analyte losses before measurement and then incorporate a substrate that collects the analytes as they flow through a collection channel. Following collection, the channel is interrogated using MS imaging. Rather than quantifying the sample present via MS peak height, the length of the channel containing appreciable analyte signal is used as a measure of analyte amount. A linear relationship between peptide amount and band length is suggested by modeling the adsorption process and this relationship is validated using two neuropeptides, acidic peptide (AP) and α-bag cell peptide [1-9] (αBCP). The variance of length measurement, defined as the ratio of standard error to mean value, is as low as 3% between devices. The limit of detection (LOD) of our system is 600 fmol for AP and 400 fmol for αBCP. Using appropriate calibrations, we determined that an individual Aplysia bag cell neuron secretes 0.15 ± 0.03 pmol of AP and 0.13 ± 0.06 pmol of αBCP after being stimulated with elevated KCl. This quantitation approach is robust, does not require labeling, and is well suited for miniaturized off-line characterization from microfluidic devices.  相似文献   

16.
提出了纳升级进样量的微流控芯片流动注射气体扩散分离光度检测系统. 制作三层结构微流控芯片, 在玻璃片上加工微反应通道, 用聚二甲基硅氧烷[Poly(dimethylsiloxane), PDMS]加工气体渗透膜和具有接收气体微通道的底片, 实现了生成气体的化学反应、气-液分离和检测在同一微芯片上的集成化. 采用缝管阵列纳升流动注射进样系统连续进样, 用吸光度法测定NH+4以验证系统性能. 结果表明, 该系统对NH+4的检出限为140 μmol/L(3σ), 峰高精度为3.7%(n=9). 在进样时间12 s、注入载流48 s和每次进样消耗200 nL试样条件下, 系统分析通量可达60样/h. 若加大样品量到800 nL, 使接收溶液停流1 min, 该系统对NH+4的检出限可达到35 μmol/L(3σ), 但分析通量降低到20样/h.  相似文献   

17.
The integration of microfluidic devices with single molecule motor detection techniques allows chip based devices to reach sensitivity levels previously unattainable.  相似文献   

18.
Park T  Lee S  Seong GH  Choo J  Lee EK  Kim YS  Ji WH  Hwang SY  Gweon DG  Lee S 《Lab on a chip》2005,5(4):437-442
Rapid and highly sensitive detection of duplex dye-labelled DNA sequences in a PDMS microfluidic channel was investigated using confocal surface enhanced Raman spectroscopy (SERS). This method does not need either an immobilization procedure or a PCR amplification procedure, which are essential for a DNA microarray chip. Furthermore, Raman peaks of each dye-labelled DNA can be easily resolved since they are much narrower than the corresponding broad fluorescence bands. To find the potential applicability of confocal SERS for sensitive bio-detection in a microfluidic channel, the mixture of two different dye-labelled (TAMRA and Cy3) sex determining Y genes, SRY and SPGY1, was adsorbed on silver colloids in the alligator teeth-shaped PDMS microfluidic channel and its SERS signals were measured under flowing conditions. Its major SERS peaks were observable down to the concentration of 10(-11) M. In the present study, we explore the feasibility of confocal SERS for the highly sensitive detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip.  相似文献   

19.
Wu CH  Yang RJ 《Electrophoresis》2006,27(24):4970-4981
This paper presents a T-form electrokinetic injection system for the discrete time-based loading and dispensing of samples of variable-volume in a microfluidic chip. A novel push-pull effect is produced during the loading and dispensing processes by the application of an appropriate control voltage distribution. The experimental and numerical results show that this push-pull loading technique produces compact sample plugs and hence improves the detection resolution of the microfluidic device. The injection system is integrated with a microflow switch, and a suitable voltage control scheme is proposed to guide the sample to the desired outlet port such that the microfluidic device can function as a microdispenser. The time-based variable-volume T-form injection method presented in this study is performed using a compact geometry and a simple control scheme and can be readily integrated with other microfluidic devices to form a microfluidic system capable of continuous monitoring and analysis of bioreactions in the life science and biochemistry fields.  相似文献   

20.
Microfluidics technology for manipulation and analysis of biological cells   总被引:1,自引:0,他引:1  
Analysis of the profiles and dynamics of molecular components and sub-cellular structures in living cells using microfluidic devices has become a major branch of bioanalytical chemistry during the past decades. Microfluidic systems have shown unique advantages in performing analytical functions such as controlled transportation, immobilization, and manipulation of biological molecules and cells, as well as separation, mixing, and dilution of chemical reagents, which enables the analysis of intracellular parameters and detection of cell metabolites, even on a single-cell level. This article provides an in-depth review on the applications of microfluidic devices for cell-based assays in recent years (2002–2005). Various cell manipulation methods for microfluidic applications, based on magnetic, optical, mechanical, and electrical principles, are described with selected examples of microfluidic devices for cell-based analysis. Microfluidic devices for cell treatment, including cell lysis, cell culture, and cell electroporation, are surveyed and their unique features are introduced. Special attention is devoted to a number of microfluidic devices for cell-based assays, including micro cytometer, microfluidic chemical cytometry, biochemical sensing chip, and whole cell sensing chip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号