首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gemini表面活性剂是通过联接基团将两个具有亲水亲油性质的两亲结构单元在其亲水头基上或靠近亲水头基处以共价键方式连接而成的一类表面活性剂。这类表面活性剂由于联接基团的引入具有比传统单链表面活性剂更高的表面活性,同时分子结构中更多的可调控因素使其在水溶液中表现出更为丰富的自聚集行为,而且分子不同部位结构的改变对分子内或分子间相互作用产生不同的影响,可实现通过分子结构的设计有效调控其自聚集能力和聚集体结构。本综述将从联接基团、烷基链、亲水头基、反离子和其它功能性基团这五个方面概述近些年Gemini表面活性剂水溶液中聚集行为方面的研究进展,总结人们对Gemini表面活性剂分子间相互作用规律的认识,期望对于进一步发展这类高效的表面活性剂体系提供有益的帮助。  相似文献   

2.
新一代表面活性剂: Geminis   总被引:91,自引:0,他引:91  
赵剑曦 《化学进展》1999,11(4):338-357
表面活性剂Gemini (或称dimeric) 是由两个单链单头基普通表面活性剂在离子头基处通过化学键联接而成, 因而阻抑了表面活性剂有序聚集过程中的头基分离力, 极大提高了表面活性。与当前为提高表面活性而进行的大量尝试, 如添加盐类、提高温度或将阴离子表面活性剂与阳离子表面活性剂混合相比较, Gemini 表面活性剂是概念上的突破, 因而被誉为新一代的表面活性剂。  相似文献   

3.
Cationic gemini surfactant dimethylene-1,2-bis(dodecyldiethylammonium bromide), referred to as C12C2C12(Et), was synthesized. The effect of sodium salicylate (NaSal) on the assembly formation and transition of this cationic gemini surfactant solution was studied. Addition of NaSal induced rich aggregate morphologies in the C12C2C12(Et) system. The microstructures and rheological responses resulting from the addition of NaSal were studied systematically to explore the interaction between gemini surfactants and hydrotropic salts. The rich aggregation behavior can be attributed to the special molecular structure of the gemini surfactant and the appropriate interaction between the surfactant and NaSal. The study of gemini surfactant and hydrotropic salt interaction brings promise for applications in materials synthesis as soft templates.  相似文献   

4.
本文合成了含酰胺基团和不含酰胺基团的两类Gemini阳离子表面活性剂,测定了其表面活性参数,研究了酰胺基团对表面活性剂的表面活性和聚集行为的影响。结果表明,酰胺基团提高了Gemini阳离子表面活性剂的临界胶团浓度,降低了胶团聚集数,增强了胶团微极性,增大了表面活性剂的饱和吸附量。  相似文献   

5.
A series of homologous gemini surfactants possessing identical hydrophobic chains but different ionic head groups (cationic, anionic, zwitterionic) were synthesized, and their aqueous solution properties were examined. The results showed that the surface activities of gemini surfactants are superior to those of corresponding conventional monomeric surfactants, and molecular arrangements of gemini surfactants at the air-water interface are tighter than those of corresponding conventional surfactants. It was also found that zwitterionic gemini surfactant possesses the highest surface activity among the three surfactants. The behavior at the air-water interface is closely related to the molecular structural features of surfactants, which provide an indication for synthesizing highly-efficient surfactants.   相似文献   

6.
Two types of Gemini surfactants containing a disulfide bond in the spacer, sodium dilauroyl cystine (SDLC) and sodium didecamino cystine (SDDC), were synthesized, and their surface properties and aggregation behavior in aqueous solution were studied by means of surface tension measurements, dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence. During the transition of the Gemini surfactants to their corresponding monomers through the reduction of disulfide bonds, the surface tensions of their aqueous solutions, as well as their aggregation behavior, changed greatly. The reduction of SDLC and SDDC led to disruption of the vesicle, and the oxidation of corresponding monomers to Gemini surfactants led to vesicle re-formation. These results demonstrated the control of surface properties and aggregation behavior by the reversible transition between the Gemini surfactant and its monomer via reduction/oxidation reactions.  相似文献   

7.
采用电导法研究了不同温度下含酯基Gemini表面活性剂在纯水和在质量分数为10%的甲醇-水(MAWR),乙二醇-水(EG-WR),丙三醇-水(GL-WR)四种体系中的集聚行为和胶束热力学;聚集行为参数包括临界胶束浓度(cmc)和抗衡离子的解离程度(α)以及胶束的热力学参数,包括标准吉布斯自由能(ΔG_m~o)、吉布斯迁移自由能(ΔG_(trans)~o)、吉布斯烷基链胶束化自由能(ΔG_(tail)~o)、标准焓变(ΔH_m~o)和标准熵变(ΔS_m~o),均被计算和讨论。研究表明在所有的研究体系中,cmc值随着疏水链的增加而减小,随着加入的醇结构中羟基数目的增加而增大,随温度的升高先变小,后变大呈U字形;胶束化过程都是自发进行的,并且在293.15 K下,胶束化过程是吸热的,在293.15 K上,胶束化过程是放热的;通过稳态荧光光谱法研究了表面活性剂在纯水、有机醇-水混合溶液中的微极性,结果表明,在相同溶剂中,随着烷基链长度的增加,溶液微环境的疏水性越强;对于相同的Gemini表面活性剂,随着加入含羟基数目越多的醇,其微环境的疏水性越强。并研究了Gemini表面活性剂在混合体系中形成胶束过程的焓-熵补偿曲线。  相似文献   

8.
Gemini surfactants contain two hydrophilic and two hydrophobic groups connected by a linkage close to the hydrophilic groups. Gemini surfactants have lower critical micelle concentration, higher surface activity, greater efficiency in decreasing the surface tension of water and the interfacial tension between water and oil, and better water solubility than conventional surfactants. Gemini surfactants are widely used as sterilizing, bacteriostatic, anti-foaming, and drug release agents in various enterprises including food production and industrial cleaning. They, therefore, play a very important social, economic, and industrial role. This paper briefly summarizes gemini surfactant development, structure, self-assembly, activity, classification, and characteristics, as well as focuses on the antibacterial mechanisms of these compounds. It is expected that the antibacterial properties of gemini surfactants may help slow the spread of the novel coronavirus (2019-nCoV).  相似文献   

9.
Gemini surfactants are cationic lipids which are utilized for both in vitro and in vivo gene delivery. Structurally, they are comprised of two hydrophobic tail regions with polar head termini that are attached to one another through a spacer region. Structural elucidation and characterization of 29 novel diquaternary ammonium gemini surfactant molecules were achieved using a quadrupole time-of-flight mass spectrometer (QqToF-MS) and a quadrupole-hexapole-quadrupole mass spectrometer (QhQ-MS). The tested compounds were categorized into four distinct structural families based upon the composition of the spacer region. Single stage (MS), tandem stage (MS/MS) and quasimulti-stage (quasi MS(3)) mass spectrometric analysis allowed for confirmation of each gemini surfactant's molecular composition and structure through the identification of common and unique product ions. Identification of similarities in the gemini surfactants' fragmentation behaviour resulted in the production of a universal fragmentation pathway that can assist in the future MS/MS analysis of novel quaternary ammonium gemini surfactants, with unique product ions being indicative of specific structural elements. Furthermore, evidence for the association of agemini surfactant with bromine counter ion was confirmed during MS analysis of tested gemini surfactants regardless of their chemical composition; previously, evidence for bromine and gemini surfactant association was only observed with compounds bearing short alkyl spacer regions. MS/MS analysis of the bromine adducts was also confirmatory to the molecular structure.Understanding the ionization and fragmentation behaviour of gemini surfactants, including bromine adducts, will allow for future qualitative and quantitative identification of these novel drug delivery agents within biological samples.  相似文献   

10.
In the last thirty years, Gemini surfactants with various structures have been designed, synthesized, and demonstrated to show superior physicochemical properties. However, the utilization of non-degradable surfactants, including these Gemini surfactants, poses a threat to the environment; hence, degradable Gemini surfactants are desirable. Herein, biodegradable cationic Gemini surfactants with amide or ester groups in the hydrophobic chains or the spacer were synthesized. A monomeric surfactant containing an amide group and a Gemini surfactant with amide groups both in the hydrophobic chains and the spacer were synthesized for comparison. The effects of amide group location on the aggregation behavior of Gemini surfactants were studied systematically. The differences between the Gemini surfactants with amide groups and Gemini surfactants with ester groups were evaluated by comparing their aggregation behavior and hydrogen bonding formation. The Gemini surfactants with amide groups (C12A-Cn-AC12) in the chains showed much larger exothermic ΔHmic and more negative ΔGmic values than those of the corresponding monomeric surfactant C12A; besides, their critical micelle concentration (cmc) was more than one order of magnitude lower than that of C12A. The amide groups located in the hydrophobic alkyl chains promoted hydrogen bonding formation and self-assembly of the Gemini surfactants C12A-Cn-AC12. Moreover, 1H NMR spectra revealed that the co-effect of a short spacer and hydrogen bonding leads to slow exchange of the C12A-C2-AC12 molecules between the monomer and the aggregate. For the Gemini surfactant series C12-ACnA-C12, the amide groups notably increased the spacer length, and largest cmc value and smallest exothermic ΔHmic value were observed for C12-AC2A-C12 instead of C12-AC6A-C12. In C12-AC12A-C12, the spacer was long and sufficiently flexible to adopt a "U"-shaped conformation above the cmc, and it acted as the hydrophobic part of the surfactant, as confirmed by 1H NMR spectra. Among the Gemini surfactant with amide groups in both the spacer and the hydrophobic alkyl chains, C12A-AC6A-AC12 had a smaller cmc and I1/I3 ratio as well as more exothermic ΔHmic values than those of C12A-C6-AC12 and C12-AC6A-C12. 1H NMR spectra indicated that an ester-alcohol structural equilibrium exists during aggregation for the Gemini surfactants with ester groups. In addition, the Gemini surfactants with ester groups formed water-mediated hydrogen bonds in the aggregates. This water-mediated hydrogen bonding between ester groups was weaker than the direct hydrogen bonding between amide groups. Therefore, the Gemini surfactants with ester groups, C12E-C6-EC12 and C12-EC6E-C12, exhibited lower surface activity, a larger micelle ionization degree, higher micropolarity, and smaller exothermic ΔHmic and less negative ΔGmic values than their counterparts with amide groups, C12A-C6-AC12 and C12-AC6A-C12.  相似文献   

11.
Cationic gemini surfactants having nucleotides as counterions (called nucleo-gemini hereafter) were synthesized and their aggregation behavior at air-water surfaces as well as in bulk solutions were studied. Fluid solutions of these nucleo-gemini surfactants show transitions to hydrogels upon addition of complementary nucleoside bases or other nucleo-gemini surfactants having complementary bases as counterions. The FTIR-ATR measurements show that the carboxylate groups of uridine form hydrogen bonds with the amine groups of adenosine. The aggregation behavior was also confirmed at the air-water interface by Brewster angle microscopy as well as surface pressure measurements; the monolayer of a gemini nucleotide was observed to undergo a transition to multilayers when nucleosides with complementary bases were added into the subphase. Isotherm curves of surface pressure monitored in parallel show a decrease in molecular area upon addition of such nucleosides.  相似文献   

12.
New series of ester functionalized quaternary ammonium gemini surfactants having different ethylene oxide units as spacer have been synthesized and investigated for their aggregation behavior and thermodynamic properties of micellization by surface tension, conductivity, and fluorescence methods. The critical micelle concentration (cmc) of these gemini surfactants increases with the increase in the length of polar hydrophilic ethylene oxide spacer. The micellization process has been found to be entropy-driven and dependent on both the tendency of the hydrophobic group of the surfactants to transfer from aqueous environment to interior of micelle as well as the rearrangement of flexible ester-linked ethylene oxide units (hydrophilic spacer) into aqueous phase. The polar ester functional groups and pairs of nonbonding electrons on oxygen atom of ethylene oxide spacer form hydrogen bonding with water molecules enhancing their solubility in aqueous system.  相似文献   

13.
双子表面活性剂由于其特殊的两亲结构可以作为纳米金颗粒(AuNPs)的表面稳定剂,但双子表面活性剂结构中的连接基团对AuNPs的粒径大小及稳定性有显著影响。本文制备了16-n-16(n=2,3,4和6)型双子表面活性剂稳定的金纳米溶胶,考察了体系pH对AuNPs稳定性的影响,并测试了其对4-硝基苯酚加氢还原体系的催化效果。结果表明,16-4-16和16-3-16对AuNPs的稳定性效果较好,所制备的AuNPs中,16-3-16-AuNPs在不同pH的环境中稳定性最好,而16-4-16-AuNPs在4-硝基苯酚加氢还原反应中的催化活性最佳。  相似文献   

14.
The interactions between surfactants and polymers are widely investigated due to favorable changes on properties in their mixtures. Silicone surfactants and pluronic copolymers, both having low toxicity, are used in the detergent, cosmetics, medical, and pharmaceutical fields. Their mixture may gain better performance in their further applications. Therefore, we investigated the interaction between an ethoxy-modified trisiloxane (a silicone surfactant named Ag-64) and a block polyether F127 in this paper. From aggregation behavior of Ag-64 and F127, the formation mechanism and conformation of the aggregates were proposed based on experiments and dissipative particle dynamics (DPD) simulation. The surface activity and aggregation behavior of Ag-64 are affected by F127 in aqueous solutions. As the amounts of added Ag-64 increase, two types of aggregates (Ag-64/F127 aggregate with F127 as skeleton and the “pearl- necklace” aggregate in which Ag-64 micelles are strung along F127 chain) form successively. At higher polymer concentration, F127 twists together to form a coil/cluster aggregate with Ag-64. The results of DPD simulation approve that two main factors, the hydrophobic association and twist of F127 coil, contribute to the formation of different aggregates of Ag-64 and F127.  相似文献   

15.
高分子表面活性剂已广泛应用于许多领域, 其构型复杂、分子量大等特点使其聚集行为不同于小分子表面活性剂. 从微观上认识其聚集行为可为应用提供指导, 因而此方面的研究倍受关注. 计算机模拟技术的发展使我们能成功地在微观或介观水平上获得高分子表面活性剂聚集行为的信息. 本文综述了耗散粒子动力学(DPD)和介观动力学(MesoDyn)在高分子表面活性剂聚集行为研究中的应用. 着重介绍了这两种介观模拟方法研究单一高分子表面活性剂溶液的相行为及其与低分子表面活性剂之间的相互作用, 揭示了实验中难以观测的微观相分离及聚集体结构形态的变化规律. 这些信息可以为实验研究提供指导和补充.  相似文献   

16.
The aggregation behavior of fluorinated surfactant in aqueous solution was investigated using dissipative particle dynamics (DPD) simulation method. Simulation results show that fluorinated surfactants behave mainly as their hydrocarbon analogues, having similar sequences of phases and aggregate structures, which are capable of building micelle, hexagonal phase and lamellar phase. But fluorinated surfactants also show interesting differences from hydrocarbon analogues, which can easily form hexagonal and lamellar structures with comparative little curvature. They can also form ellipsoid or rod-like micelles even in very low concentrations instead of spheroid ones. The dynamic aggregation behavior of fluorinated surfactants, as well as the comparison with hydrogenated ones, was also investigated.  相似文献   

17.
The effects of NaBr on the adsorption of alkanediyl-bis-(dimethyl dodecyl- ammonium bromide) (referred to as C12-s-C12 2Br) at the air/water interface and on the micellization in the solution have been investigated by surface tension and fluorescence techniques. The results showed that the addition of NaBr greatly enhances their efficiency and effectiveness in surface tension reduction as well as the ability of micellization, even induces strong premicellar aggregation before the cmc. These were attributed to the unique molecular structure of gemini surfactant, where the flexible polymethylene chain was the spacer linking the two quaternary ammonium heads. By a short spacer, the charges of the two quaternary ammonium head groups are concentrated. Even for a long spacer (s = 12), since it is bent toward the alkyl tails, the similar effect is also produced. This results in the high sensitivity of their ionic head groups to salt. Besides, the addition of salt also effectively promotes the hydrophobic interaction between the alkyl tails of gemini surfactants. The addition of NaBr strongly promotes the adsorption of quaternary ammonium gemini surfactants C12-s-C12 2Br at the air/water interface and the micellization in the solution.  相似文献   

18.
Gemini surfactants are potential candidates as synthetic vectors for the delivery of genes into cells to induce protein expression. With the ultimate objective of obtaining a better understanding of the mechanism of DNA transfection, two new asymmetric gemini surfactants (py-3-12 and py-6-12) have been synthesized as fluorescence probes. The physicochemical properties and morphologies of the self-assembled aggregates formed in aqueous solution have been studied using surface tension, specific conductance, dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and fluorescence techniques. The interaction between pyrene-based gemini surfactants and DNA was investigated by using UV-vis and fluorescence spectroscopy. Binding constants for the DNA (salmon sperm)-gemini lipoplexes were measured. Fluorescence studies show that excimer emission occurs upon complexation with DNA.  相似文献   

19.
两亲分子对碳纳米管的分散稳定作用   总被引:4,自引:0,他引:4  
综述了近年来国内外对碳纳米管在两亲分子水溶液中的分散作用研究, 从表面活性剂、聚合物和生物大分子三方面, 分别阐述了用非成键法对碳纳米管进行分散的不同机理. 离子型表面活性剂或聚电解质主要靠亲水基团之间的静电斥力阻止碳纳米管之间的聚集, 而非离子型表面活性剂或大分子则主要靠亲水基团所产生的空间位阻使分散体系保持稳定.  相似文献   

20.
A series of novel gemini cationic surfactants alkanediyl-alpha,omega-bis (hydroxyethylmethylhexadecylammonium bromide) with polymethylene spacer chain length of 4, 6, 8, and 10 carbon atoms was synthesized and characterized. Critical micellar concentrations of the gemini surfactants in aqueous solutions as determined by the surface tension and conductance measurements were observed to be in the range 1.39-3.63 microM. The critical micellar concentration was observed to increase initially with spacer length up to 6 methylene groups and to decrease thereafter with the increase in spacer length. The micellar microstructure in aqueous solutions examined through small angle neutron scattering (SANS) revealed that the extent of aggregation growth and variation in shapes of micelles strongly depend on head group polarity, spacer chain length, and temperature. The propensity to micellar growth with spacer chain length 4 was found to be much higher than with the longer spacer lengths. The fractional charge on the micelle increases with increased spacer chain length and temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号