首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Lewis basic platinum(0)–CO complex supported by a diphosphine ligand and B(C6F5)3 act cooperatively, in a manner reminiscent of a frustrated Lewis pair, to activate small molecules such as hydrogen, CO2, and ethene. This cooperative Lewis pair facilitates the coupling of CO and ethene in a new way.  相似文献   

2.
Progress in frustrated Lewis pair (FLP) chemistry has revealed the importance of the main group elements in catalysis, opening new avenues in synthetic chemistry. Recently, new reactivities of frustrated Lewis pairs have been uncovered that disclose that certain combinations of Lewis acids and bases undergo single‐electron transfer (SET) processes. Here an electron can be transferred from the Lewis basic donor to a Lewis acidic acceptor to generate a reactive frustrated radical pair (FRP). This minireview aims to showcase the recent advancements in this emerging field covering the synthesis and reactivities of frustrated radical pairs, with extensive highlights of the results from Electron Paramagnetic Resonance (EPR) spectroscopy to explain the nature and stability of the different radical species observed.  相似文献   

3.
A new six‐membered cyclic frustrated phosphane/borane Lewis pair was liberated from its HB(C6F5)2 adduct by treatment with vinylcyclohexane. The system is an active frustrated Lewis pair that undergoes cycloaddition reactions with suitable π reagents and it splits dihydrogen. At room temperature in solution the new compound is a monomer, however, in the crystal and in solution at low temperature it aggregates to a thermodynamically favoured supramolecular macrocyclic cyclooctamer.  相似文献   

4.
Di(mesityl)cyclohexenylphosphine undergoes hydroboration with Piers' borane [HB(C6F5)2] to yield the cyclohexylene‐anellated frustrated Lewis pair 5 . This P/B pair splits H2 with the formation of the product 4 and adds to the C?O double bond of phenyl isocyanate to yield 6 . In the crystal, compound 5 features a puckered four‐membered heterocyclic core structure with a long P? B bond (av. 2.197(5) Å). The activation energy of the P? B cleavage of the frustrated Lewis pair 5 was determined by dynamic 19F NMR spectroscopy at ΔG(298 K)=12.1±0.3 kcal mol?1.  相似文献   

5.
Using a frustrated Lewis pair approach, the 1,1-bis-(C(6)F(5))(2)BOB(C(6)F(5))(2) is shown to bind CO(2) in a monodentate fashion, while the bis-boranes (X(2)B)(2)C=CMe(2) (X = Cl, C(6)F(5)) give bidentate chelation of CO(2) affording unique heterocycles.  相似文献   

6.
Hydroboration of the electron poor phosphine (1-propenyl)P(C(6)F(5))(2) with Piers' borane [HB(C(6)F(5))(2)] gave the geminal frustrated Lewis pair (C(6)F(5))(2)P-CH(Et)-B(C(6)F(5))(2). It undergoes 1,2-addition reactions to an alkene and an alkyne and to the C=N bond of an isocyanate. With mesityl azide it undergoes a 1,3-addition reaction.  相似文献   

7.
The reaction of bis(pentafluorophenyl)borane, HB(C(6)F(5))(2), with 3,5-di-tert-butyl-1H-pyrazole (3) affords the zwitterionic pyrazolium-borate trans-5 and, after dehydrogenation by use of the frustrated carbene-borane Lewis pair 1/B(C(6)F(5))(3), the bifunctional pyrazolylborane 6, which is able to cleave dihydrogen heterolytically with the formation of a mixture of cis-5 and trans-5.  相似文献   

8.
A computational approach reveals cooperative action of the preorganized acidic and basic centers of the frustrated P(t-Bu)(3)/B(C(6)F(5))(3) Lewis pair on olefinic bonds as the key to the observed regioselective addition reaction.  相似文献   

9.
Cleaved by frustration, an H(2) molecule inserts into the void between the components of the frustrated Lewis pair 1, which consists of a dicationic ruthenium pincer complex as the Lewis acid and (tBu)(3) P as the Lewis base. The end-on-coordinated N(2) in 1 accepts the hydride, and this is the initial step, which could, in principle, lead to the complete reduction of N(2) to NH(3) .  相似文献   

10.
Coupling of carbon monoxide with nitrogen monoxide was achieved at a frustrated Lewis pair template. This unique reaction uses hydride as an auxiliary, which reductively activates carbon monoxide at the frustrated Lewis pair. The CO/NO coupling reaction then takes place through a pathway involving a radical reaction in which the hydrogen atom auxiliary is eventually removed again.  相似文献   

11.
The reaction of trans ‐[M(N2)2(dppe)2] (M=Mo, 1Mo , M=W, 1W ) with B(C6F5)3 ( 2 ) provides the adducts [(dppe)2M=N=N‐B(C6F5)3] ( 3 ) which can be regarded as M/B transition‐metal frustrated Lewis pair (TMFLP) templates activating dinitrogen. Easy borylation and silylation of the activated dinitrogen ligands in complexes 3 with a hydroborane and hydrosilane occur by splitting of the B−H and Si−H bonds between the N2 moiety and the perfluoroaryl borane. This reactivity of 3 is reminiscent of conventional frustrated Lewis pair chemistry and constitutes an unprecedented approach for the functionalization of dinitrogen.  相似文献   

12.
In the mid-1990s, it was discovered that tris(pentafluorophenyl)borane, B(C(6)F(5))(3), was an effective catalyst for hydrosilylation of a variety of carbonyl and imine functions. Mechanistic studies revealed a counterintuitive path in which the function of the borane was to activate the silane rather than the organic substrate. This was the first example of what has come to be known as "frustrated Lewis pair" chemistry utilizing this remarkable class of electrophilic boranes. Subsequent discoveries by the groups of Stephan and Erker showed that this could be extended to the activation of dihydrogen, initiating an intense period of activity in this area in the past 5 years. This article describes the early hydrosilylation chemistry and its subsequent applications to a variety of transformations of importance to organic and inorganic chemists, drawing parallels with the more recent hydrogen activation chemistry. Here, we emphasize the current understanding of the mechanism of this process rather than focusing on the many and emerging applications of hydrogen activation by fluoroarylborane-based frustrated Lewis pair systems.  相似文献   

13.
An N,P‐heterocyclic germylene/B(C6F5)3 Lewis adduct 2 presenting multi‐reactive sites (P/B Lewis pair, germylene, Ge=P π‐bond) is reported. In contrast to classical frustrated Lewis pairs or divalent Group 14 element species, 2 is able to activate two small molecules simultaneously. Of particular interest, 2 reacts with silanes leading to the formation of original cationic germylenes 3 , and can be used as a metal‐free catalyst for selective CO2‐hydrosilylation to H2C(OSiEt3)2.  相似文献   

14.
The combination of phosphorus(V)‐based Lewis acids with diaryl amines and diaryl silylamines promotes reversible activation of dihydrogen and can be further exploited in metal‐free catalytic olefin hydrogenation. Combined experimental and density functional theory (DFT) studies suggest a frustrated Lewis pair type activation mechanism.  相似文献   

15.
The formation of a frustrated Lewis pair consisting of sodium hydride (Na+H?) and a framework‐bound hydroxy proton O(H+) is reported upon H2 treatment of zeolite NaY loaded with Pt nanoparticles (Ptx/NaY). Frustrated Lewis pair formation was confirmed using in situ neutron diffraction and spectroscopic measurements. The activity of the intrazeolite NaH as a size‐selective catalyst was verified by the efficient esterification of acetaldehyde (a small aldehyde) to form the corresponding ester ethyl acetate, whereas esterification of the larger molecule benzaldehyde was unsuccessful. The frustrated Lewis pair (consisting of Na+H? and O(H+)) generated within zeolite NaY may be a useful catalyst for various catalytic reactions which require both H? and H+ ions, such as catalytic hydrogenation or dehydrogenation of organic compounds and activation of small molecules.  相似文献   

16.
The “η2‐formylborane” moiety formed by CO reduction with HB(C6F5)2 at a P/B frustrated Lewis pair template undergoes a hydroxymethylation reaction at the α‐position to nitrogen in pyridine or isoquinoline. The analogous reaction with pyrimidine revealed a mechanism related to the Tschitschibabin reaction.  相似文献   

17.
Persistent radicals undergo hydrogen atom abstraction reactions with a great variety of substrates, but not with dihydrogen. It has now been found that the TEMPO radical splits dihydrogen under mild conditions in the presence of the strong bulky B(C6F5)3 boron Lewis acid. The reaction is thought to proceed by a typical frustrated Lewis pair mechanism with the TEMPO radical acting as the active Lewis base. The reaction was analyzed by DFT, which indicates that no significant spin density on the hydrogen atoms is accumulated along the H2 splitting reaction path.  相似文献   

18.
Frustrated Lewis pairs are playing an increasingly important role in organometallic chemistry. Examples are presented and discussed where organometallic systems themselves serve as the Lewis base or Lewis acid components in frustrated Lewis pair chemistry, mostly through their attached functional groups. Activation of dihydrogen takes place easily in many of these systems. This may lead to the generation of novel catalyst systems but also in many cases to the occurrence of specific reactions at the periphery of the organometallic frameworks. Increasingly, FLP reactions are used to carry out functional group conversions in organometallic systems under mild reaction conditions. The limits of typical FLP reactivity are explored with selected organometallic examples, a discussion that points toward new developments, such as the discovery of facile new 1,1-carboboration reactions. Learning more and more about the broad spectrum of frustrated Lewis pair chemistry helps us to find novel reactions and applications.  相似文献   

19.
The design of structurally dynamic molecular networks can offer strategies for fabricating stimuli‐responsive adaptive materials. Herein we first report a gas‐responsive dynamic gel system based on frustrated Lewis pair (FLP) chemistry. Two trefoil‐like molecules with bulky triphenylborane and triphenylphosphine groups are synthesized as complementary Lewis acid and base with trivalent sites. They can together bind CO2 gas molecules and further form a cross‐linked network via the bonding interactions between FLPs and CO2. Such CO2‐bridged dative linkages are shown to be dynamic covalent bonds, which endow the frustrated Lewis network with adaptable behaviors and unprecedented gas‐regulated viscoelastic, mechanical, and self‐healing performance. This study is an initial attempt to apply the FLP concept in materials chemistry, but we believe that this strategy will open a promising future for gas‐sensitive smart materials.  相似文献   

20.
Asymmetric hydrogenation, a seminal strategy for the synthesis of chiral molecules, remains largely unmet in terms of activation by non-metal sites of heterogeneous catalysts. Herein, as demonstrated by combined computational and experimental studies, we present a general strategy for integrating rationally designed molecular chiral frustrated Lewis pair (CFLP) with porous metal–organic framework (MOF) to construct the catalyst CFLP@MOF that can efficiently promote the asymmetric hydrogenation in a heterogeneous manner, which for the first time extends the concept of chiral frustrated Lewis pair from homogeneous system to heterogeneous catalysis. Significantly, the developed CFLP@MOF, inherits the merits of both homogeneous and heterogeneous catalysts, with high activity/enantio-selectivity and excellent recyclability/regenerability. Our work not only advances CFLP@MOF as a new platform for heterogeneous asymmetric hydrogenation, but also opens a new avenue for the design and preparation of advanced catalysts for asymmetric catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号