首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recombinant human erythropoietin (rHuEPO) and novel erythropoiesis-stimulating protein (NESP) were analyzed by CE-ESI-MS using an IT as analyzer. The IT parameters were optimized by direct infusion of solutions of different intact proteins (myoglobin, transferrin, alpha1-acid glycoprotein and fetuin) with different degrees of glycosylation (from 0 to 35% w/w). Two physically adsorbed capillary coatings from UltraTol Pre-Coats (low normal (LN) and high reverse (HR)) were evaluated for the separation of rHuEPO and NESP glycoforms by CE-ESI-IT-MS. The results obtained with the neutral LN coating suggest that an IT mass spectrometer enables identification of the main glycoforms of a complex glycoprotein such as rHuEPO. Although LN provided acceptable glycoform resolution for rHuEPO, the separation obtained for NESP was less significant due to the higher microheterogeneity of this glycoprotein. Reproducibility studies confirmed the lack of stability and bleeding of the LN coating, which caused problems with MS detection, such as a dramatic loss of sensitivity and the presence of peaks in the mass spectra corresponding to molecular ions in the coating. In contrast, the cationic HR coating gave faster but poorer glycoform separations due to the presence of an anodal EOF. However, the positive charge of the coating provided enhanced hydrolytic stability, making it more suitable than the LN coating for the on-line MS coupling.  相似文献   

2.
This study describes the characterization of the glycan moieties and the peptide backbone of six glycoforms of IB-8a CON1(+), a basic proline-rich protein present in human saliva. MS analyses on the intact glycoproteins before and after N-deglycosylation with PNGase F and high-resolution MS/MS sequencing by LTQ Orbitrap XL of peptides and glycopeptides from tryptic digests allowed the structural characterization of the glycan moieties and the polypeptide backbone, as well as to establish the glycosylation site at the asparagine residue at 98th position. Five of the glycoforms carry a biantennary N-linked glycan fucosylated in the innermost N-acetylglucosamine of the core and showing from zero to four additional fucoses in the antennal region. The sixth glycoform carries a monoantennary monofucosylated oligosaccharide. The glycoform cluster was detected on 28 of 71 adult saliva specimens. Level of fucosylation showed interindividual variability with the major relative abundance for the trifucosylated glycoform. Nonglycosylated IB-8a CON1(+) and the variant IB-8a CON1(-), lacking of the glycosylation site, have been also detected in human saliva.  相似文献   

3.
Congenital disorders of glycosylation (CDG) are due to defective glycosylation of glycoconjugates. Conserved oligomeric Golgi (COG)‐CDG are genetic diseases due to defects of the COG complex subunits 1–8 causing N‐glycan and O‐glycan processing abnormalities. In COG‐CDG, isoelectric focusing separation of undersialylated glycoforms of serum transferrin and apolipoprotein C‐III (apoC‐III) allows to detect N‐glycosylation and O‐glycosylation defects, respectively. COG5‐CDG (COG5 subunit deficiency) is a multisystem disease with dysmorphic features, intellectual disability of variable degree, seizures, acquired microcephaly, sensory defects and autistic behavior. We applied matrix‐assisted laser desorption/ionization‐MS for a high‐throughput screening of differential serum O‐glycoform and N‐ glycoform in five patients with COG5‐CDG. When compared with age‐matched controls, COG5‐CDG showed a significant increase of apoC‐III0a (aglycosylated glycoform), whereas apoC‐III1 (mono‐sialylated glycoform) decreased significantly. Serum N‐glycome of COG5‐CDG patients was characterized by the relative abundance of undersialylated and undergalactosylated biantennary and triantennary glycans as well as slight increase of high‐mannose structures and hybrid glycans. Using advanced and well‐established MS‐based approaches, the present findings reveal novel aspects on O‐glycan and N‐glycan profiling in COG5‐CDG patients, thus providing an increase of current knowledge on glycosylation defects caused by impairment of COG subunits, in support of clinical diagnosis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
Capillary electrophoresis for the analysis of glycoprotein pharmaceuticals   总被引:2,自引:0,他引:2  
Kamoda S  Kakehi K 《Electrophoresis》2006,27(12):2495-2504
Carbohydrate chains in glycoprotein pharmaceuticals play important roles for the expression of their biological activities, but the structure and compositions of carbohydrate chains are dependent on the conditions for their production. Therefore, evaluation of the carbohydrate chains is quite important for productive process development, characterization of product for approval application, and routine quality control. The oligosaccharides themselves have complex structure including blanching and various glycosidic linkages, and oligosaccharides in one glycoprotein pharmaceutical generally have high heterogeneity, and characterization of oligosaccharide moiety in glycoprotein has been a challenging target. In these situations, CE has been realized as a powerful tool for oligosaccharide analysis due to its high resolution and automatic operating system. This review focuses on the application of CE to the glycoform analysis of glycoproteins and profiling of the N-linked glycans released from glycoprotein pharmaceuticals. Current applications for structure analysis using CE-MS(n) technique and glycan profiling method for therapeutic antibody are also described.  相似文献   

5.
Glycosylation of recombinant human erythropoietin (rhEPO) is a post-translational process which depends on the type of cell in which rhEPO is synthesized, but also on the cell culture conditions and the final purification steps. These glycosylation modifications alter the biological activity, solubility and lifetime of rhEPO in blood. Thus, a rapid and simple method for the elucidation of the carbohydrate microheterogeneity of rhEPO is needed in order to evaluate a certain manufacturing process or assure the quality of the final product. Based on a recently developed method [1], the accurate mass determination of the intact glycoforms from two types of commercial rhEPO (epoetin-α and epoetin-β) by capillary electrophoresis-electrospray-time of flight-mass spectrometry is presented. The sample treatment consists of a fast and simple preconcentration step of the ready-to-use drug achieved by a centrifugal filter device. Characterization of the carbohydrate composition of each single glycoform is performed, in agreement with the results in glycan and glycopeptide analysis reported by other authors. The main differences between the carbohydrate structures of both epoetins are shown: the existence of two additional basic sialic acid isoforms for epoetin-β and the higher degree of acetylation for epoetin-α. The agreement of the main glycoforms for both epoetins is shown by molecular mass agreement. The high accuracy and reproducibility of the mass measurements with a standard deviation below 1 Da is proved by repeated analysis of European Pharmacopoeia rhEPO. Summarizing, the presented method enables the fast and reliable characterization of intact rhEPO in pharmaceutical products.Presented at: CE in the Biotechnology & Pharmaceutical Industries: 7th Symposium on the Practical Applications for the Analysis of Proteins, Nucleotides and Small Molecules, Montreal, Canada, August 12–16, 2005  相似文献   

6.
A rapid method for analysis of glycans of glycoproteins is presented. This method comprised deglycosylation, sample cleanup and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of glycans. The enzymatic deglycosylation of N-linked glycoproteins was enhanced in terms of speed and reproducibility using an enzyme-friendly surfactant. The released glycans were desalted using a micro-scale solid phase extraction (SPE) device packed with a hydrophilic interaction chromatography (HILIC) sorbent. Hydrophilic glycans were well retained by SPE, while salts and surfactants were removed from the sample. The glycans were eluted using 25-50 microL of solvent and analyzed directly without derivatization using MALDI-MS. MALDI quadrupole time-of-flight (Q-Tof) instrumentation was utilized for glycan profiling and structure characterization by tandem mass spectrometry (MS/MS). The presented method allows sensitive analysis of glycans benefiting from optimized deglycosylation reactions and efficient sample cleanup.  相似文献   

7.
In this study we describe a new method for rapid and sensitive analysis of reduced high mannose and complex glycans using zwitterionic-type hydrophilic interaction nano-liquid chromatography (nano ZIC-HILIC, 75 μm I.D.×150 mm) coupled with high resolution nanoelectrospray ionisation time of flight mass spectrometry (nano ESI-TOF-MS). The retention of neutral glycans increases with increasing molecular weight and is higher for high mannose glycans than for complex-type glycans. The selectivity of ZIC-HILIC for sialylated glycans differs from that for the neutral glycans and is believed to involve electrostatic repulsion; therefore, charged glycans are eluted earlier than neutral glycans with comparable molecular weight. Due to the improved sensitivity achieved by employing a ZIC-HILIC nano-column, a range of less common complex glycans has been studied and the high resolution mass spectrometry enabled confirmation of glycan composition for the proposed structures. Good sensitivity for glycans was achieved without prior fluorescent labelling, and the time of the analysis was significantly reduced compared to the separation of glycans on a conventional-size column. The proposed method offers a fast and sensitive approach for glycan profiling applied to analysis of biopharmaceuticals.  相似文献   

8.
Human transferrin (Tf) is a model glycoprotein for congenital disorders of glycosylation (CDG) diagnosis. In the last few years, new CE-UV methods for intact Tf glycoforms analysis have been developed using nonvolatile BGEs and organic modifiers. However, the use of these BGEs does not allow the coupling of these procedures with electrospray MS (ESI-MS). In this study, a new CE-UV separation method of Tf glycoforms is developed, using a double-layer stable coating and a volatile BGE based on ammonium acetate. The separation method is optimized using standard Tf and their potential is demonstrated applying the method to the analysis of sera Tf from healthy individuals and CDG patients. The CE-UV separation method has been coupled to ESI-MS detection. Main parameters such as sheath liquid composition are optimized in order to obtain a good sensitivity. The CE-ESI-MS method has also been used in serum samples obtaining the separation of the different proteins present in serum and partial separation of Tf glycoforms. Different mass spectra and deconvoluted molecular masses were obtained for each sialoform, allowing unequivocal glycoform identification.  相似文献   

9.
A microfluidic system has been designed that integrates both imaged capillary isoelectric focusing (iCIEF) separations and downstream MS detection into a single assay. Along with the construction of novel instrumentation and an innovative microfluidic chip, conversion to MS‐compatible separation reagents has also been established. Incorporation of 280 nm absorbance iCIEF‐MS analysis not only permits photometric quantitation of separated charge isoforms but also facilitates the direct monitoring of analyte focusing and mobilization in real‐time. The outcome of this effort is a device with the unique ability to allow for both the characterization and identification of protein charge and mass isoforms in under 15 min. Acquisition, quantitation, and identification of highly resolved intact mAb charge isoforms along with their critical N‐linked glycan pairs clearly demonstrate analytical utility of our innovative system. In total, 33 separate molecular features were characterized by the iCIEF‐MS system representing a dramatic increase in the ability to monitor multiple intact mAb critical quality attributes in a single comprehensive assay. Unlike previously reported CIEF‐MS results, relatively high ampholyte concentrations, of up to 4% v/v, were employed without impacting MS sensitivity, observed to be on the order of 1% composition.  相似文献   

10.
Glycosylation is one of the most common yet diverse post-translational modifications. Information on glycan heterogeneity and glycosite occupancy is increasingly recognized as crucial to understanding glycoprotein structure and function. Yet, no approach currently exists with which to holistically consider both the proteomic and glycomic aspects of a system. Here, we developed a novel method of comprehensive glycosite profiling using nanoflow liquid chromatography/mass spectrometry (nano-LC/MS) that shows glycan isomer-specific differentiation on specific sites. Glycoproteins were digested by controlled non-specific proteolysis in order to produce informative glycopeptides. High-resolution, isomer-sensitive chromatographic separation of the glycopeptides was achieved using microfluidic chip-based capillaries packed with graphitized carbon. Integrated LC/MS/MS not only confirmed glycopeptide composition but also differentiated glycan and peptide isomers and yielded structural information on both the glycan and peptide moieties. Our analysis identified at least 13 distinct glycans (including isomers) corresponding to five compositions at the single N-glycosylation site on bovine ribonuclease B, 59 distinct glycans at five N-glycosylation sites on bovine lactoferrin, 13 distinct glycans at one N-glycosylation site on four subclasses of human immunoglobulin G, and 20 distinct glycans at five O-glycosylation sites on bovine κ-casein. Porous graphitized carbon provided effective separation of glycopeptide isomers. The integration of nano-LC with MS and MS/MS of non-specifically cleaved glycopeptides allows quantitative, isomer-sensitive, and site-specific glycoprotein analysis.  相似文献   

11.
The therapeutic and immunological properties of biopharmaceuticals are governed by the glycoforms contained in them. Thus, bioinformatics tools capable of performing comprehensive characterization of glycans are significantly important to the biopharma industry. The primary structural elucidation of glycans using mass spectrometry is tricky and tedious in terms of spectral interpretation. In this study, the biosimilars of a therapeutic monoclonal antibody and an Fc-fusion protein with moderate and heavy glycosylation, respectively, were employed as representative biopharmaceuticals for released glycan analysis using liquid chromatography–tandem mass spectrometry instead of conventional mass spectrometry-based analysis. SimGlycan® is a software with proven ability to process tandem MS data for released glycans could identify eight additional glycoforms in Fc-fusion protein biosimilar, which were not detected during mass spectrometry analysis of released glycans or glyco-peptide mapping of the same molecule. Thus, liquid chromatography–tandem mass spectrometry analysis of released glycans not only complements conventional liquid chromatography–mass spectrometry-based glycan profiling but can also identify additional glycan structures that may otherwise be omitted during conventional liquid chromatography–tandem mass spectrometry based analysis of mAbs. The mass spectrometry data processing tools, such as PMI Byos™, SimGlycan®, etc., can display pivotal analytical capabilities in automated liquid chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry-based glycan analysis workflows, especially for high-throughput structural characterization of glycoforms in biopharmaceuticals.  相似文献   

12.
The structure of glycans from glycoproteins is highly relevant for their function. We tightly integrate liquid chromatography–mass spectrometry (LC-MS), MS/MS, and nuclear magnetic resonance (NMR) data to achieve a complete characterization of even isobaric glycans differing in only one linkage position or in the substitution in one branch. As example, we analyzed ten desialylated underivatized glycans from bovine fibrinogen. The molecules were separated on a PGC column, and LC-MS data allowed an assignment of the compositions of the glycans. MS/MS data of the same glycans allowed elucidation of sequence and to some extent of branching and linkage. All MS/MS fragmentation methods led to multiple dissociations, resulting in several cases in ambiguous data. The MS/MS data were interpreted both by scientists and automatically by software, and the differential results are compared. Additional data from a tight integration of LC-MS and NMR data resulted in a complete structural characterization of the glycans. The acquisition of simple 1D 1H NMR data led—in combination with LC-MS and MS/MS data—to an unambiguous assignment of the isobaric glycans. Compounds that were not separated in the chromatography could easily be assigned structurally by applying the 3D cross-correlation (3DCC) technology to arrive at NMR spectra of the pure components—without actually separating them. By applying LC-MS, MS/MS, 1D 1H NMR, and 3DCC together, one can assign glycan structures from glycoconjugates with high confidence affording only 200 pmol of glycan material.  相似文献   

13.
Human AGP is an acidic glycoprotein mainly produced by liver that presents a high degree of heterogeneity. It can present different amino acid sequences and has five N-glycosylation sites leading to a wide range of different protein isoforms. AGP structure and composition has been widely studied due to its drug-binding behavior and relation with disease. However, so far, the characterization has been performed only on protein fragments, i.e., the peptide or glycan level. Here, the analysis of intact human AGP purified from human serum is performed by capillary electrophoresis–time-of-flight mass spectrometry. In this way, it is possible to characterize more than 150 human AGP isoforms, differing both in the amino acid sequence and in the glycosylation. The detected masses could be attributed unequivocally to an overall composition based on the combination of the analysis of the released glycans and the characterization of the deglycosylated protein. Different AGP samples purified from human serum were characterized and compared. High inter-individual variability among AGP isoforms expression was observed. The presented method enables for the first time clinical studies based on detailed isoform distribution of intact glycoproteins.  相似文献   

14.
Glycosylation, the enzymatic addition of carbohydrates to a protein, is one of the most abundant post-translational modifications found in nature. There is variability in the number, location, and identity of glycans attached. As a result, a glycoprotein consists of a number of glycoforms with different combinations of glycans, potentially resulting in different stability, toxicity, and activity. This is especially important in the biopharmaceutical industry where product consistency and safety are vital. Glycoprotein analysis involves numerous mass spectrometry based techniques, each of which provides various aspects of characterization. The current paper describes two commonly used analytical techniques for glycoprotein characterization. In one experiment, nonspecific proteolysis is combined with a two-tiered mass spectrometry approach (MALDI-TOF and LC-MS/MS) to gain glycosylation site and glycan identity. In a second approach, glycans were enzymatically released, labeled with a fluorescent dye, and analyzed using LC-Fluorescence-MS/MS to give glycan identification and relative quantification. The type and degree of information yielded by each method is assessed in an effort to identify desired reference material characteristics for improving biopharmaceutical glycoanalysis.  相似文献   

15.
《Electrophoresis》2018,39(16):2069-2082
High‐resolution capillary zone electrophoresis – mass spectrometry (CZE‐MS) has been of increasing interest for the analysis of biopharmaceuticals. In this work, a combination of middle‐down and intact CZE‐MS analyses has been implemented for the characterization of a biotherapeutic monoclonal antibody (mAb) with a variety of post‐translational modifications (PTMs) and glycosylation structures. Middle‐down and intact CZE separations were performed in an acidified methanol‐water background electrolyte on a capillary with a positively charged coating (M7C4I) coupled to an Orbitrap mass spectrometer using a commercial sheathless interface (CESI). Middle‐down analysis of the IdeS‐digested mAb provided characterization of PTMs of digestion fragments. High resolution CZE enabled separation of charge variants corresponding to 2X‐deamidated, 1X‐deamidated, and non‐deamidated forms at baseline resolution. In the course of the middle‐down CZE‐MS analysis, separation of glycoforms of the FC/2 fragment was accomplished due to hydrodynamic volume differences. Several identified PTMs were confirmed by CZE‐MS2. Incorporation of TCEP‐HCl reducing agent in the sample solvent resulted in successful analysis of reduced forms without the need for alkylation. CZE‐MS studies on the intact mAb under denaturing conditions enabled baseline separation of the 2X‐glycosylated, 1X‐glycosylated, and aglycosylated populations as a result of hydrodynamic volume differences. The presence of a trace quantity of dissociated light chain was also detected in the intact protein analysis. Characterization of the mAb under native conditions verified identifications achieved via intact analysis and allowed for quantitative confirmation of proteoforms. Analysis of mAbs using CZE‐MS represents a complementary approach to the more conventional liquid‐chromatography – mass spectrometry‐based approaches.  相似文献   

16.
Site-specific characterisation of mucin-type O-linked glycosylation is an analytical challenge due to glycan heterogeneity, lack of glycosylation site consensus sequence and high density of occupied glycosylation sites. Here, we report the use of electron transfer dissociation (ETD) for the site-specific characterisation of densely glycosylated mucin-type O-linked glycopeptides using ESI-IT-MS/MS. Synthetic glycopeptides from the human mucin-1 (MUC-1) tandem repeat region containing a range of O-linked, tumour-associated carbohydrate antigens, namely Tn, T and sialyl T, with different glycosylation site occupancies and an increasing number of tandem repeats were studied. In addition, a glycopeptide from the anti-freeze glycoprotein of Antarctic and Arctic notothenoids, bearing four O-linked, per-acetylated T antigens was characterised. ETD MS/MS of infused or capillary LC-separated glycopeptides provided broad peptide sequence coverage (c/z·-type fragment ions) with intact glycans still attached to the Ser/Thr residues. Thus, the glycosylation sites were unambiguously determined, while simultaneously obtaining information about the attached glycan mass and peptide identity. Highly sialylated O-glycopeptides showed less efficient peptide fragmentation, but some sequence and glycosylation site information was still obtained. This study demonstrates the capabilities of ETD MS/MS for site-specific characterisation of mucin-type glycopeptides containing high-density O-linked glycan clusters, using accessible and relative low-resolution/low-mass accuracy IT MS instrumentation.  相似文献   

17.
Glycomics is the comprehensive study of glycan expression in an organism, cell, or tissue that relies on effective analytical technologies to understand glycan structure–function relationships. Owing to the macro- and micro-heterogeneity of oligosaccharides, detailed structure characterization has required an orthogonal approach, such as a combination of specific exoglycosidase digestions, LC-MS/MS, and the development of bioinformatic resources to comprehensively profile a complex biological sample. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) has emerged as a key tool in the structural analysis of oligosaccharides because of its high sensitivity, resolution, and robustness. Here, we present a strategy that uses LC-ESI-MS/MS to characterize over 200 N- and O-glycans from human saliva glycoproteins, complemented by sequential exoglycosidase treatment, to further verify the annotated glycan structures. Fragment-specific substructure diagnostic ions were collated from an extensive screen of the literature available on the detailed structural characterization of oligosaccharides and, together with other specific glycan structure feature ions derived from cross-ring and glycosidic-linkage fragmentation, were used to characterize the glycans and differentiate isomers. The availability of such annotated mass spectrometric fragmentation spectral libraries of glycan structures, together with such substructure diagnostic ions, will be key inputs for the future development of the automated elucidation of oligosaccharide structures from MS/MS data.
Figure
?  相似文献   

18.
Mechref Y 《Electrophoresis》2011,32(24):3467-3481
The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful MS and MS/MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high-order MS/MS (MS(n) ). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion-exchange chromatography, hydrophilic interaction chromatography and GC. However, CE and microfluidics CE (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to MS.  相似文献   

19.
Changes in the glycome of human proteins and cells are associated with the progression of multiple diseases such as Alzheimer's, diabetes mellitus, many types of cancer, and those caused by viruses. Consequently, several studies have shown essential modifications to the isomeric glycan moieties for diseases in different stages. However, the elucidation of extensive isomeric glycan profiles remains challenging because of the lack of analytical techniques with sufficient resolution power to separate all glycan and glycopeptide iso‐forms. Therefore, the development of sensitive and accurate approaches for the characterization of all the isomeric forms of glycans and glycopeptides is essential to tracking the progression of pathology in glycoprotein‐related diseases. This review describes the isomeric separation achievements reported in glycomics and glycoproteomics in the last decade. It focuses on the mass spectrometry–based analytical strategies, stationary phases, and derivatization techniques that have been developed to enhance the separation mechanisms in liquid chromatography systems and the detection capabilities of mass spectrometry systems.  相似文献   

20.
Glycosylated proteins often show a large variation in their glycosylation pattern, complicating their structural characterization. In this paper, we present a method for the accurate mass determination of intact isomeric glycoproteins based on capillary electrophoresis-electrospray-time of flight-mass spectrometry. Human recombinant erythropoietin has been chosen as a showcase. The approach enables the on-line removal of nonglycosylated proteins, salts, and neutral and negatively charged species. More important, different glycosylation forms are separated both on the base of differences in the number of negatively charged sialic acid residues and the size of the glycans. Thus, 44 glycoforms and in total about 135 isoforms of recombinant human erythropoietin, taking also acetylation into account, could be distinguished for the reference material from the European Pharmacopeia. Distinct glycosylation differences for samples from different suppliers are clearly observed. Based on the accurate mass an overall composition of each single isoform is proposed, perfectly in agreement with data on glycan and glycopeptide analysis. This method is an ideal complement to the established techniques for glycopeptide and glycan analysis, not differentiating branching or linkage isoforms, but leading to an overall composition of the glycoprotein. The presented strategy is expected to improve significantly the ability to characterize and quantify isomeric glycoforms for a large variety of glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号