首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A solvent extraction process is proposed to recover uranium and thorium from the crystal waste solutions of zirconium oxychloride. The extraction of iron from hydrochloride medium with P350, the extraction of uranium from hydrochloride with N235, and the extraction of thorium from the mixture solutions of nitric acid and the hydrochloric acid with P350 was investigated. The optimum extraction conditions were evaluated with synthetic solutions by studying the parameters of extractant concentration and acidity. The optimum separation conditions for Fe (III) are recognized as 30% P350 and 4.5 to 6.0 M HCl. The optimum extraction conditions for U (VI) are recognized as 25% N235 and 4.5 to 6.0 M HCl. And the optimum extraction conditions for Th (VI) are recognized as 30% P350 and 2.5 to 3.5 M HNO3 in the mixture solutions. The recovery of uranium and thorium from the crystal waste solutions of zirconium oxychloride was investigated also. The results indicate that the recoveries of uranium and thorium are 92 and 86%, respectively.  相似文献   

2.
The extraction behavior of uranium, thorium and nitric acid has been investigated for the TEHDGA/isodecyl alcohol/n-dodecane solvent system. Conditional acid uptake constant (K H) of TEHDGA/n-dodecane and the ratio of TEHDGA to nitric acid were obtained as 1.72 and 1:0.96, respectively. The extracted species of uranium and thorium in the organic phase were found to be UO2(NO3)2·2TEHDGA and Th(NO3)4·2TEHDGA. A workable separation factor (D Th/D U) of the order of 300 was observed between thorium and uranium in the nitric acid range of 0.5M to 1.5M. Similar separation factor was also achieved at higher acidity when thorium was present in large concentration compared to uranium. These results indicate that TEHDGA solvent system could be a potential candidate for separation of thorium from uranium.  相似文献   

3.
Thorium was extracted from a mixture of nitric acid and NaNO3 of 0.01M each at pH 2.2 on a column of silica gel coated with TOPO. Thorium was separated from alkalis, alkaline earths, chromium, iron, cobalt, nickel, zinc, cadmium, mercury, lead, trivalent rare earths, platinum group metals, chloride, phosphate and acetate in binary mixtures by selective extraction of thorium. Thorium was separated from cerium (IV), zirconium, uranium and molybdenum by selective elution of thorium with 0.01M H2SO4. The method was extended for the analysis of thorium in monozite ore.  相似文献   

4.
A fluorescence based method has been developed for the determination of trace amounts of uranium in thorium matrix using a mixture of phosphoric acid (H3PO4) and sulfuric acid (H2SO4), as fluorescence enhancing reagent for uranyl (UO2 2+) ion fluorescence. Synthetic samples mimicking the composition of ThO2 fuel were prepared and the concentration of U(VI) was estimated. Satisfactory results are obtained when uranium is present at a concentration of 10 ppm in solid thorium samples with good precision.  相似文献   

5.
A simple separation method has been developed for thorium(IV) using poly-(dibenzo-18-crown-6) and column chromatography. The separation was carried out from ascorbic acid medium. The adsorption of thorium(IV) was quantitative from 0.001-0.01M ascorbic acid. The elution of thorium(IV) was quantitative with 4.0-8.0M HCl, 3.0-6.0M HClO4, 4.0-8.0M H2SO4 and 1.0-8.0M HBr. The capacity of poly-(dibenzo-18-crown-6) for thorium(IV) was found to be 1.379±0.01 m.mol/g of crown polymer. Thorium(IV) was separated from a number of cations in binary as well as in multicomponent mixtures. The method was extended to the determination of thorium in monazite sand. It is possible to separate and determine 5 ppm of thorium(IV) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately ±2%).  相似文献   

6.
The radioactivity concentration of 236Pu, 232U and 228Th in aqueous samples has been determined by means of alpha spectroscopy after chemical separation and pre-concentration of the radionuclides by cation exchange and liquid–liquid extraction using the Chelex-100 resin and 30% TBP/dodecan, respectively. Method calibration using a 236Pu standard solution containing the daughter radionuclides results in a detector efficiency of 18% and in a chemical recovery for cation-exchange which is (30 ± 7)%, (90 ± 5)% and (20 ± 5)% for plutonium, uranium and thorium, respectively. The chemical recovery for liquid–liquid extraction is found to be (60 ± 7)%, (50 ± 5)% and (70 ± 5)%, for plutonium, uranium and thorium, respectively. The differences in the efficiencies can be ascribed to the oxidation states, the different actinides present in solution. Taking into account that the electrodeposition of the radionuclides under study is quantitative, the total method efficiency is calculated to be (18 ± 15)%, (46 ± 7)% and (15 ± 5)%, for plutonium, uranium and thorium, respectively, at the mBq concentration range. The detection limit of the alpha spectrometric system has been found to be 0.2 mBq/L, suggesting that the method could be successfully applied for the radiometric analysis of the studied radionuclides and particularly uranium in aqueous samples.  相似文献   

7.

The extraction behavior of thorium from Baotou iron ore with primary amine N1923 levextrel resins by a micro-column was investigated under the decompression technology. Thorium was adsorbed on the micro-column conditioned by 3 mol L−1 HCl solution before use. The washing liquor of 0.5 mol L−1 H2SO4–0.1 mol L−1 H3PO4 solution was used to wash impurity elements and the solution of 3 mol L−1 HCl was used as the eluent for thorium. The method was applied to analyze thorium in the Baotou iron ore sample. The relative standard deviations of thorium in R-715 standard sample, Baotou main ore standard sample and Baotou west ore were of 0.49%, 1.63%, 1.16%, respectively. The accuracy of the method was satisfactory.

  相似文献   

8.
A simple rapid microcolumn preconcentration technique is described for the determination of fluoride ions in geological samples through the ion chromatography system. The technique is based on the adsorption of fluoride ions on H2SO4-activated nanometer-size zirconia (NSZ) packed in a microcolumn. Activation parameters (concentration and contact time) were studied, and an activation time of about 50 min and a concentration of 6 M were then selected. The analytical procedure was optimized in terms of the flow rate of the sample solution, eluent concentration, and the eluent flow rate for the adsorption capacities of H2SO4-activated NSZ. At a flow rate of 1.0 mL/min, the detection limits (3σ) of the technique for fluoride ions was 0.3 ng/mL, and the RSD was 0.04%. The dynamic adsorption capacity of NSZ was found to be 8.4 mg/g. The text was submitted by the authors in English.  相似文献   

9.
Distribution ratios of Pu(IV) between 7.5M HNO3+0.75M H3PO4+0.3M H2SO4 media and a macroporous anion-exchange resin Amberlyst A-26 (MP) increased from 40 to 250 when 1M aluminium nitrate was added to the aqueous medium. When 1M ferric nitrate was used in place of aluminium nitrate the distribution ratio further increased to 850. The 10% Pu(IV) breakthrough capacities with a 5 ml bed resin column, using synthetic feed solutions containing 1M aluminium nitrate, were 1.4 g l–1, 3.2 g l–1 at flow rates of 30 ml per hour and 10 ml per hour, respectively. The corresponding 10% Pu(IV) breakthrough capacities in the presence of 1M ferric nitrate were 8.5 g l–1 and 12.8 g l–1. More than 97% of plutonium could be recovered from actual analytical phosphate waste solutions.  相似文献   

10.
Fission-produced 131I and 103Ru radionuclides have been separated sequentially by distillation from H2SO4 of controlled chemical composition. The thermal-neutron irradiated uranium trioxide targets were digested in 2M NaOH solution and then, the supernatant solution was acidified to 20% H2SO4 with addition of a few drops of H2O2 solution. On boiling for 3.5 hours, ≥99.99%131I was volatilized, passed through 3M H2SO4 traps, and then collected in 0.1M NaOH + 0.01% Na2S2O3 solution with a recovery yield of 73.6%. The product radionuclide had high radiochemical and radionuclidic purities. After separation of 131I, the fission-product solution was acidified to 40% H2SO4 acid containing KMnO4 as an oxidant and boiled for 40 minutes. Ruthenium nuclides were volatilized and collected in 0.1M NaOH solution. Gamma-ray spectrometry showed that the separation and the recovery yields of 103Ru were ≥99.99 and 65%, respectively, with ~92% radionuclidic purity, measured immediately after separation. The radionuclides of 132I and 106Rh were the main contaminants detected in the obtained 103Ru product solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Quantitative determination of uranium in (U, Pu)O2 fuels is usually done by the DAVIES-GRAY method. High concentrations of phosphoric acid in the analytical waste generated by this method make the revocery of plutonium rather complex. Studies on the recovery of plutonium from nitric acid medium containing different concentrations of H3PO4 by conventional anion-exchange procedure reveal that more than 90% of the plutonium can be easily recovered when the phosphoric acid concentration is less than 0.5 M in the solution. A method was developed for the determination of uranium in the presence of plutonium, which involves the reduction of U(VI) to U(IV) by Fe(II) in a medium of 3.5M H3PO4 +4.5M H2SO4 instead of 10–11M H3PO4 so as to have the H3PO4 concentration 0.6M in the waste. A number of determinations of uranium in UO2(NO3)2 working standard solutions and (U, Pu) synthetic solutions with uranium at the 3–7 mg level were carried out by this method. The precision obtained was better than ±0.2% and the accuracy was also within the precision limits. The resulting analytical waste generated was directly subjected to anion exchange separation for the recovery of plutonium which was found to be more than 90%.  相似文献   

12.
Extraction behavior of 1 × 10−2–0.1 M U(VI) from aqueous phases containing 0.86 M Th(IV) at 4 M HNO3 in 1.1 M tributyl phosphate (TBP) and 1.1 M N,N-dihexyl octanamide (DHOA) solutions in different diluents viz. n-dodecane, 10% 1-octanol + n-dodecane, and decahydronaphthalene (decalin) was studied. Third-phase formation was observed in both the extractants using n-dodecane as diluent. There was a gradual decrease in Th(IV) concentration in the third-phase (heavy organic phase, HOP) with increased aqueous U(VI) concentration [0.71 M (no U(VI))–0.61 M (0.1 M U(VI)) for TBP; 0.27 M (no U(VI))–0.22 M (0.1 M U(VI)) for DHOA]. The HOP volume in case of DHOA was ~2.2 times of that of TBP. Uranium concentration in HOP increased with its initial concentration in the aqueous phase [from 1.8 × 10−2 M (0.01 M U(VI))–0.162 M (0.1 M U(VI)) for TBP; from 1.4 × 10−2 M (0.01 M U(VI))–0.14 M (0.1 M U(VI)) for DHOA] suggesting that Th(IV) was being replaced by U(VI). An empirical correlation was developed for predicting the concentrations of uranium and thorium in HOP for both the extractants. No third-phase appeared during the extraction of uranium and thorium from the aqueous phases employing 10% 1-octanol + n-dodecane, or decalin as diluents, and therefore, were better choices as diluent for alleviating the third-phase formation during the reprocessing of spent thorium based fuels, and for the recovery of thorium from high-level waste solutions.  相似文献   

13.
An analytical procedure for the determination of uranium and thorium in the sub-ng/g range as well as of other trace elements in the ng/g to g/g range in high purity quartz samples is described. The results obtained by inductively coupled plasma mass spectroscopy (ICP-MS) are compared to those obtained by other analytical techniques (instrumental neutron activation analysis, INAA; flame atomic absorption spectrometry, AAS; Zeeman graphite furnace atomic absorption spectrometry, ZGFAAS; total reflection X-ray fluorescence analysis, TRFA; direct current arc optical emission spectrometry, DC-arc OES; and X-ray fluorescence analysis, XRFA). For the ICP-MS measurements, the decomposition of the samples is carried out with HF/HNO3/H2SO4-mixtures. The results obtained by the different methods show reasonable agreement. For uranium and thorium, ICP-MS proves to be the most sensitive method: detection limits of about 50 pg/g can be achieved for both elements.Presented in part at the 1989 European Winter Conference on Plasma Spectrochemistry, Reutte, Austria  相似文献   

14.
Summary Minerals in the soil range from those that easily weather to those that are very resistant to the weathering processes. The minerals used in this study are referred to as “resistates” because of their resistance to natural weathering processes.1 It is also known that there are some resistate minerals that have a tendency to contain uranium and thorium within their crystal structure. These resistates can contain as much as 15-20% of the total uranium and thorium present in the soil.9 Do resistates dissolve in acids, particularly in the HF/HNO3 procedures, if not what can be done to the HF/HNO3 process to dissolve more of the resistate minerals? How would these acid techniques compare to the fusion method used for mineral dissolution? Could the resistate minerals contain considerable amount of uranium and thorium? These were the questions addressed in this research. The comparative data indicate that the use of H2SO4 in the dissolution process resulted in ~25% overall increase in the minerals dissolving therefore resulting in a higher yield of extracted uranium and thorium.  相似文献   

15.
In the method, soil was fused together with Na2CO3 and Na2O2 at 600 °C, uranium and thorium were leached out with HCl, HNO3 and HF, and HClO4 was used to eliminate the residual HF through evaporation. The leaching solution (2 M HNO3) was passed through a Microthene-TOPO column to adsorb uranium and thorium. Thorium was first eluted with 2 M HCl and electrodeposited in 0.025 M H2C2O4 + 0.15 M HNO3 on a stainless steel disc. Uranium was eluted with a 0.025 M ammonium oxalate solution and also electrodeposited. Both thorium and uranium isotopes on the discs were measured separately by α-spectrometry.  相似文献   

16.
A smart fully automated system is proposed for determination of thorium and uranium in a wide concentration range, reaching environmental levels. The hyphenation of lab-on-valve (LOV) and multisyringe flow injection analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell, allows the spectrophotometric determination of thorium and uranium in different types of environmental sample matrices achieving high selectivity and sensitivity levels. Online separation and preconcentration of thorium and uranium is carried out by means of Uranium and TEtraValents Actinides resin. The potential of the LOV–MSFIA makes possible the full automation of the system by the in-line regeneration of the column and its combination with a smart methodology is a step forward in automation. After elution, thorium(IV) and uranium(VI) are spectrophotometrically detected after reaction with arsenazo-III. We propose a rapid, inexpensive, and fully automated method to determine thorium(IV) and uranium(VI) in a wide concentration range (0–1,200 and 0–2,000 μg L-1 Th and U, respectively). Limits of detection reached are 5.9 ηg L-1 of uranium and 60 ηg L-1 of thorium. Different water sample matrices (seawater, well water, freshwater, tap water, and mineral water), and a channel sediment reference material which contained thorium and uranium were satisfactorily analyzed with the proposed method.  相似文献   

17.
In this study, the effects of poly(N-ethylaniline) (PNEA) monolayer coating and PPY/PNEA and PNEA/PPY bilayer coatings, which were formed on the low carbon steel (LCS) surface by electropolymerization in 0.1 M monomer + 0.3 M oxalic acid medium, on the corrosion of the LCS in 1 M H2SO4 medium have been investigated. LCS electrodes, which were coated with each of these conductive polymer layers, were held in 1 M H2SO4 medium for various time periods, in order to obtain current potential curves, and with the help of these curves, the corrosion parameters have been determined. Experimental findings show that the LCS coated with polymer layers prevent the corrosion of bare LCS in 1 M H2SO4 medium and bilayer PPY/PNEA and PNEA/PPY coatings are better than monolayer PNEA coating. In order to elucidate the interaction between the coatings and the metal, theoretical calculations have been done using AM1 semiempirical method. The calculated data have been found to support experimental findings.  相似文献   

18.
Through the phase inversion technique, asymmetric flat sheet pH-responsive Polysulfone (PSF) membrane was prepared and utilized for recovering H2SO4 in the presence of NaCl and KHCO3 from wastewater. Hydrophilic and pH-responsive characteristics were incorporated within the membrane by blending Polyethylene glycol methyl ether (PEGME) and Humic acid (HA). The modification in membrane morphology with pH was characterized by Field Emission Scanning Electron Microscopy (FESEM), Differential scanning calorimetry (DSC) and Fourier Transform Infrared Studies (FTIR) method. The ion exchange capacity of the prepared pH-responsive membrane increased from 0.145 to 0.25 mmol/g when compared to the pristine PSF membrane. Pure water flux (PWF) of 113.8–46.8 L/m2h, water uptake of 25.9%–6.8% were obtained for pH-responsive membrane when pH varied from 4 to 12. Recovery of H2SO4 was optimized by design expert software 9.0 TRIAL and was found to be a maximum of 76.57 ± 1.5% in the presence of 0.32 M NaCl and 0.5 M KHCO3 at pH ~8.4, through the pH-responsive PSF membrane by diffusion dialysis process. The influencing parameters (pH, NaCl (M) and KHCO3 (M)) were optimized and acid recovery modeling was performed through response surface methodology (RSM) and central composite design (CCD). F value of 6573.40 through ANOVA study indicated the significance of the quadratic model chosen, whereas an insignificant lack of fit (prob > F = 0.0519) confirmed the goodness of fit between the model and obtained experimental data's.  相似文献   

19.
The extraction of uranium(VI) from sulfuric acid medium with tri-octylphosphine oxide (TOPO) in n-heptane was studied. Accompanied with the increase in the concentration of H2SO4, the distribution coefficient of uranium(VI) increased in the region of dilute sulfuric acid. When the concentration of H2SO4 surpassed 3.5 mol·dm−3, the distribution coefficient of uranium(VI) was at maximum. This result was due to the competition extraction between uranium(VI) and H2SO4. From the data, the composition of extracted species and the equilibrium constant of extraction reaction have been evaluated, which were (TOPOH)2UO2(SO4)2 (TOPO) and 107.6±0.15, respectively.  相似文献   

20.
This paper describes the solvent extraction studies carried out on an acidic low assay uranium bearing leach liquor generated during sulfuric acid leaching of a refractory uranium ore using alamine 336?Cisodecenol?Ckerosene reagent combine. The leach liquor has a U3O8 content of about 270?mg/L, free acidity 2.4?N H2SO4 and total dissolved solids concentration of 260?g/L. Process parameteric variation studies indicated strong influence of free acidity of the leach liquor, alamine 336 concentration and aqueous to organic phase ratio on the extraction efficiency of uranium. An extraction efficiency of about 95% was achieved when the free acidity of leach liquor was 1?N H2SO4 or lower, using 2% (v/v) alamine 336 at ambient temperature with an aqueous to organic phase ratio of 1:1. The loading capacity under these conditions was 1.2?g/L of U3O8. About 98% of the uranium values could be stripped from the loaded organic using 1?N NaCl in 0.2?N H2SO4. The solvent extraction studies aided in developing a suitable process flowsheet for treating refractory uranium ores which need high acidity during leaching and relatively lower acidity for purification by solvent extraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号