首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Green water impact pressure due to plunging breaking waves impinging on a simplified, three-dimensional model structure was investigated in the laboratory. Two breaking wave conditions were tested: one with waves impinging on the vertical wall of the model at the still water level and the other with waves impinging on the horizontal deck surface. Pressure measurements were taken at locations in two vertical planes on the deck surface with one at centerline of deck and the other between the centerline and an edge. Impact pressure was found to be quite different between the two wave conditions even though the incoming waves are essentially identical. Two types of pressure variations were observed??impulsive type and non-impulsive type. Much higher pressure was observed for the deck impingement wave condition, even though the flow velocities were quite close. Void fraction was also measured at selected points. Impact pressure was correlated with the mean kinetic energy calculated based on the measured mean velocities and void fraction. Impact coefficient, defined as the ratio between the maximum pressure at a given point and the corresponding mean kinetic energy, was obtained. For the wall impingement wave condition, the relationship between impact pressure and mean kinetic energy is linear with the impact coefficient close to 1.3. For the deck impingement wave condition, the above relationship does not show good correlation; the impact coefficient was between 0.6 and 7. The impact coefficient was found to be a function of the rate of pressure rise.  相似文献   

2.
The three-dimensional flow structures of a queue of studied model vehicles (i.e., one-, two- and three-vehicle cases) were investigated comprehensively in a closed-circuit wind tunnel using particle image velocimetry (PIV) for the typical urban vehicle speeds (i.e., 10, 30 and 50 km/h). In this three-dimensional vehicle wake, a pair of longitudinal vortices is characterized by counter-rotating and moving downstream at relatively low velocity than their surrounding flow. The flow structures of multiple studied model vehicles are dominated by the wake generated from the last studied model vehicle but the preceding studied model vehicle(s) also has/have some minor effects. Cross-sectional turbulence distribution is non-uniform in the far-wake region for all studied cases. The lowest turbulence occurs at the center part of the vehicle wake while high turbulence occurs at its two sides. As such, it may lead to considerable underestimation in turbulence magnitude if the measurement is only taken along the centerline of the vehicle wake.  相似文献   

3.
Unsteady plunging (heaving) of a wing in the form of a flat plate can give rise to pronounced axial flow in the small-scale leading-edge vortex, during its initial stage of formation. Opposing axial flows along the vortex interact at the plane of symmetry giving rise to large-scale patterns of streamwise-oriented vorticity, which can dominate the tip vortices over part of the oscillation cycle.  相似文献   

4.
5.
Measurement of the three-dimensional flow field inside the cardiac chambers has proven to be a challenging task. This is mainly due to the fact that generalized full-volume velocimetry techniques cannot be easily implemented to the heart chambers. In addition, the rapid pace of the events in the heart does not allow for accurate real-time flow measurements in 3D using imaging modalities such as magnetic resonance imaging, which neglects the transient variations of the flow due to averaging of the flow over multiple heartbeats. In order to overcome these current limitations, we introduce a multi-planar velocity reconstruction approach that can characterize 3D incompressible flows based on the reconstruction of 2D velocity fields. Here, two-dimensional, two-component velocity fields acquired on multiple perpendicular planes are reconstructed into a 3D velocity field through Kriging interpolation and by imposing the incompressibility constraint. Subsequently, the scattered experimental data are projected into a divergence-free vector field space using a fractional step approach. We validate the method in exemplary 3D flows, including the Hill’s spherical vortex and a numerically simulated flow downstream of a 3D orifice. During the process of validation, different signal-to-noise ratios are introduced to the flow field, and the method’s performance is assessed accordingly. The results show that as the signal-to-noise ratio decreases, the corrected velocity field significantly improves. The method is also applied to the experimental flow inside a mock model of the heart’s right ventricle. Taking advantage of the periodicity of the flow, multiple 2D velocity fields in multiple perpendicular planes at different locations of the mock model are measured while being phase-locked for the 3D reconstruction. The results suggest the metamorphosis of the original transvalvular vortex, which forms downstream of the inlet valve during the early filling phase of the right ventricular model, into a streamline single-leg vortex extending toward the outlet.  相似文献   

6.
A multifractal model is developed to connect the Lagrangian multifractal dimensions with their Eulerian counterparts. We propose that the characteristic time scale of a Lagrangian quantity should be the Lagrangian time scale, and it should not be the Eulerian time scale which was widely used in previous studies on Lagrangian statistics. Using the present model, we can obtain the scaling exponents of Lagrangian velocity structure functions from the existing data or models of scaling exponents of Eulerian velocity structure functions. This model is validated by comparing its prediction with the results of experiments, direct numerical simulations, and the previous theoretical models. The comparison shows that the proposed model can better predict the scaling exponents of Lagrangian velocity structure functions, especially for orders larger than 6.  相似文献   

7.
Numerical simulation of open water flow in natural courses seems to be doomed to one- or two-dimensional numerical simulations. Investigations of flow hydrodynamics through the application of three-dimensional models actually have very few appearances in the literature. This paper discusses the development and the initial implementation of a general three-dimensional and time-dependent finite volume approach to simulate the hydrodynamics of surface water flow in rivers and lakes. The slightly modified Navier-Stokes equations, together with the continuity and the water depth equations, form the theoretical basis of the model. A body-fitted time-dependent co-ordinate system has been used in the solution process, in order to accommodate the commonly complex and irregular boundary and bathymetry of natural water courses. The proposed adaptive technique allows the mesh to follow the movement of the water boundaries, including the unsteady free-water surface. The primitive variable equations are written in conservative form in the Cartesian co-ordinate system, and the computational procedure is executed in the moveable curvilinear co-ordinate system. Special stabilizing techniques are introduced in order to eliminate the oscillating behaviour associated with the finite volume formulation. Also, a new and comprehensive approximation for the pressure forces at the faces of a control volume is presented. Finally, results of several tests demonstrate the performance of the finite volume approach coupled with the adaptive technique employed in the three-dimensional time-dependent mesh system.  相似文献   

8.
A three-dimensional photoelastic analysis using the “stress-freezing” technique was conducted to determine the stress distributions in the matrix of a unidirectionally fiber-reinforced composite model subjected to matrix shrinkage and normal transverse loading. The model, consisting of a square array of polycarbonate rods in an epoxy matrix, simulated a boron-filament-reinforced plastic composite with a fiber-volume fraction of 0.50 at the critical temperature of the matrix epoxy. The effects of matrix shrinkage were separated from those of external loading by analyzing two identical models, one loaded and the other unloaded. The Lamé-Maxwell equations of equilibrium were used to separate stresses along axes of symmetry on interior transverse slices. Axial stress components were obtained by subslicing. Results are presented in dimensionless form by dividing the stresses by the average stress through the section. A comparison with theoretical results for a boron-epoxy composite shows excellent agreement, although Poisson's ratio of the model matrix is appreciably different from that of the prototype (0.5 compared to 0.35). One significant result was that the maximum stress occurs in the middle of the matrix section between fibers which is at variance with the theoretical prediction of maximum stress at the interface. Stress-concentration factors vary from 1.80 at the interface to 2.0 at the midpoint of the matrix section between fibers.  相似文献   

9.
This study is concerned with the three-dimensional(3D) stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips. To the authors’ knowledge, this is the first study presenting this very interesting analysis. Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs) by using appropriate similarity transformation. These ODEs with the corresponding boundar...  相似文献   

10.
Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 42–47, July–August, 1991.  相似文献   

11.
Three-dimensional vortical structures have been measured in a circular-cylinder wake using particle imaging velocimetry (PIV) for the Reynolds number range of 2×103 to 1×104. The PIV was modified, compared with the conventional one, in terms of its light sheet arrangement to capture reliably streamwise vortices. While in agreement with previous reports, the presently measured spanwise structures complement the data in the literature in the streamwise evolution of the near-wake spanwise vortex in size, strength, streamwise and lateral convection velocities, shedding new light upon vigorous interactions between oppositely signed spanwise structures. The longitudinal vortices display mushroom patterns in the (x, z)-plane in the immediate proximity to the cylinder. Their most likely inclination in the (x, y)-plane is inferred from the measurements in different (x, z)-planes. The longitudinal vortices in the (y, z)-plane show alternate change in sign, though not discernible at x/d > 15. They decay in the maximum vorticity and circulation rapidly from x/d = 5 to 10 and slowly for x/d > 10, and are further compared with the spanwise vortices in size, strength and rate of decay.  相似文献   

12.
Traveling gravity-capillary water waves on the interface of a three-dimensional fluid of infinite depth are computed. The vortex sheet formulation with the small scale approximation is used as the mathematical model for the fluid motion. The fluid interface is parameterized isothermally. The traveling wave ansatz for parameterized surfaces is described. Waves are computed using Fourier collocation and quasi-Newton iteration; large amplitude overturned traveling waves are computed via a dimension-breaking based numerical continuation method.  相似文献   

13.
14.
Generation of three-dimensional nonlinear waves on a model viscoelastic coating in a potential flow of an incompressible fluid is studied. Periodic nonlinear waves enhanced by the development of quasi-static instability (wave divergence) are considered. The coating is modeled by a flexible flat plate supported by a distributed nonlinearly-elastic spring foundation. Plate flexure is described on the basis of the Karman equations of the theory of thin plates. Perturbations of surface pressure in the potential flow are found in the small slope approximation to an accuracy to terms of the second order of smallness. Numerical simulation reveals a jump-like transition from two-dimensional nonlinear waves to three-dimensional wave structures, which are also observed in experiments.  相似文献   

15.
建立了正交各向异性材料热弹性问题的三维无网格伽辽金(Element Free Galerkin, EFG)法计算模型。利用该计算模型对三维复合材料汽轮机叶轮和轴承座进行了热弹性分析,对比了材料方向角及热导率因子、热膨胀系数因子和拉压弹性模量因子不同组合情况下轴承座的最大热变形总位移和当量应力值,讨论了材料方向角及上述正交各向异性因子对热变形和当量应力的影响规律,并与各向同性材料进行了对比。结果表明:三维EFG模型的热变形总位移和当量应力相对误差范数分别比有限元法小0.1215%和0.1359%;材料方向角同时影响热变形的大小和方向,但对当量应力方向影响不大;正交各向异性材料因子主要影响热变形和当量应力的大小。在考虑热-机械载荷作用下的三维复合材料零件结构设计中,当以刚度或强度为主要需求时,材料方向角、热导率因子、热膨胀系数因子、拉压弹性模量因子分别在(45°~60°,8:1:4~10:1:5,(1/6):(1/5):1~(1/5):(1/4):1,(7/5):1:(9/5)~(3/2):1:2)或(0°~10°,(1/10):1:(1/5)~(1/8):1:(1/4),(1/5):1:(1/6)~(1/4):1:(1/5),1:(1/5):(1/10)~1:(1/4):(1/8))范围内取值能有效降低轴承座等结构的热变形和当量应力。  相似文献   

16.
A new model for the behavior of polycrystalline shape memory alloys (SMA), based on a statically constrained microplane theory, is proposed. The new model can predict three-dimensional response by superposing the effects of inelastic deformations computed on several planes of different orientation, thus reproducing closely the actual physical behavior of the material. Due to the structure of the microplane algorithm, only a one-dimensional constitutive law is necessary on each plane. In this paper, a simple constitutive law and a robust kinetic expression are used as the local constitutive law on the microplane level. The results for SMA response on the macroscale are promising: simple one-dimensional response is easily reproduced, as are more complex features such as stress-strain subloops and tension-compression asymmetry. A key feature of the new model is its ability to accurately represent the deviation from normality exhibited by SMAs under nonproportional loading paths.  相似文献   

17.
The initiation, growth and rupture of intracranial aneurysms are intensively studied by computational fluid dynamics. To gain confidence in the results of numerical simulations, validation of the results is necessary. To this end the unsteady flow was measured in a silicone phantom of a realistic intracranial aneurysm. A flow circuit was built with a novel unsteady flow rate generating method, used to model the idealised shape of the heartbeat. This allowed the measurement of the complex three-dimensional velocity distribution by means of laser-optical methods such as laser doppler anemometry (LDA) and particle image velocimetry (PIV). The PIV measurements, available with high temporal and spatial distribution, were found to have good agreement with the control LDA measurements. Furthermore, excellent agreement was found with the numerical results.  相似文献   

18.
Marine vessels are continuously subject to impulsive loading from impact on the water surface. Understanding and quantifying the hydrodynamics generated by the three-dimensional (3D) water impact of a solid body is central to the design of resilient and performing vessels. Computational fluid dynamics (CFD) constitutes a viable tool for the study of water entry problems, which may overcome some of the drawbacks associated with semi-analytical and experimental methods. Here, we present a new computational study of the 3D water entry of a solid body with multiple curvatures. The method of finite volume is utilized to discretize incompressible Navier-Stokes equations in both air and water, and the method of volume of fluid is employed to describe the resulting free-surface multiphase flow. Computational results are validated against available experimental findings obtained using particle image velocimetry in terms of both the flow kinetics and kinematics. Specifically, we demonstrate the accuracy of our CFD solution in predicting the overall force experienced by the hull, the pile-up phenomenon, the velocity field in the water, the distribution of the hydrodynamic loading, and the energy transfer during the impact. Our approach is expected to aid in the validation of new semi-analytical solutions and to offer a viable means for conducting parametric studies and design optimization on marine vessels.  相似文献   

19.
床面上直立圆柱的三维湍流数值模拟   总被引:3,自引:0,他引:3  
薛雷平  刘桦  刘海江 《力学学报》2004,36(6):649-654
从数值预报桥墩等结构物床面局部冲刷的角度发展绕直立圆柱的三维湍流的数值模拟技术. 基于Wilcox的k-ω两方程湍流模式,采用基于有限体积法的压力修正SIMPLE算法, 计算了绕床面直立圆柱的三维湍流流场,分析了光滑和粗糙床面两种情况下的流动情况. 通过系列的验证计算,表明该计算模型能够比较准确地反映不同外来流条件下绕直立圆柱的流场. 计算结果揭示了床面粗糙度对绕圆柱的湍流流动的影响.  相似文献   

20.
An experimental study was carried out to elucidate the large-scale vortical structure in a separated and reattaching flow over a backward-facing step. The Reynolds number based on the step height (H) was Re H =33,000. The large-scale vortical structure was probed by means of three-dimensional velocity measurements performed at the recirculation zone (x/H=4.0) and the reattachment zone (x/H=7.5). A 32-channel microphone array extending in the streamwise and spanwise directions was used for sensing the wall pressure fluctuations. The relationship between the flow field and the relevant spatial mode of the pressure field was determined by examining the spatial box filtering. From the relevant spatial mode of the wall pressure fluctuations, a conditional averaging technique was employed to characterize the coherent structure. In addition, the cross-correlation between velocity and wall pressure fluctuations was calculated to identify the structure and the length scale of the large-scale vortex. The cross-correlation results revealed that the large-scale hairpin vortices have a three-dimensional structure, in agreement with previous findings. The present results clearly show the growth and downstream elongation of the hairpin vortices.List of symbols H step height, m - k turbulent kinetic energy, m2/s2 - q freestream dynamic pressure, Pa - Re H Reynolds number based on U 0 and H,U oH/ - U 0 freestream velocity, m/s - U c convection velocity, m/s - X 0 streamwise coordinate of the measurement origin, m - x R time mean reattachment length, m Greek symbols p forward flow time fraction - cross-correlation coefficient - time delay, s - vorticity, m2/s  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号