首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文利用椭偏仪研究了成膜方式对不同分子量聚苯乙烯(PS)超薄膜玻璃化转变行为的影响.发现PS超薄膜的玻璃化转变温度(Tg)随着厚度降低的幅度与其成膜方式、分子量有关.当PS膜低于一定厚度时,旋涂法制备的PS膜的Tg比相同厚度浇铸法制备的膜低,且二者Tg差值随着厚度的降低而增大.这二种膜Tg的差值和Tg发生偏离时膜的临界厚度随聚苯乙烯分子量的增加而增加.利用非辐射能量转移荧光光谱证实成膜方式主要是影响PS分子链在膜中的构象.旋涂法制备的PS膜相对于本体在近表面区域分子链的形变更大.分子量愈大,分子运动时内摩擦阻力愈大,近表面区域分子的残余应力愈大.由于强运动能力的活性层(空气/PS界面)对PS薄膜Tg的影响占主导,相同厚度下分子链愈伸展,残余应力越大,PS薄膜的Tg越低,导致成膜方式与分子量的影响也愈大.  相似文献   

2.
After determining the size dependent miscibility of binary polymer blend films using molecular dynamics simulation and thermodynamics, the size dependent glass transition temperatures Tg(w,D) of several polymer blend films in miscible ranges are determined by computer simulation and the Fox equation where w is the weight fraction of the second component and D denotes thickness of films. The Tg(w,D) function of a thin film can decrease or increase as D decreases depending on their surface or interface states. The computer simulation results are consistent with available experimental results and theoretical results for polymer blend films of PPO/PS [poly(2,6-dimethyl-1,4-phenylene oxide)/polystyrene] and stereoregular PMMA/PEO [poly(methyl methacrylate)/poly(ethylene oxide)]. The physical background of the above results is related to the root of mean square displacement of thin films in their different regions.  相似文献   

3.
Summary: Semi crystalline and amorphous poly(lactic acid) (PLA) thin films exhibit different glass transition temperature and behaviour, as revealed by ellipsometry. For semi-crystalline poly(L-lactic acid) (PLLA) thin film (with crystalline content between 40 and 60%), the glass transition temperature (Tg) is found to decrease below a film thickness of 50 nm. This depression was interpreted in term of disentenglement effect which is likely to occur upon confining the amorphous PLA phase near a non interacting surface. New results performed on non completed films, i.e. isolated objects, also reveal the lower transition temperature, thus underlying the importance of the entanglement state of the polymer chains on their mobility. For amorphous PLA thin film, obtained from the L and D copolymer, two distinct glass transitions were observed, with the highest Tg attributed to the presence of some nano-phase domains, formed by a possible cooperation of the D and L blocks to form stereocomplexes sequences, within the film. Furthermore, if these Tg remained constant as film thicknesses decrease down to 50 nm, they were also found to slightly decrease for isolated objects, thus supporting the importance of the entanglement hypothesis on the glass transition.  相似文献   

4.
The density profiles of polymethylmethacrylate (PMMA) thin films on silicon (111) single crystal wafers were investigated via neutron reflectivity measurements. Films were prepared by spin casting PMMA onto silicon wafers from o-xylene solution followed by annealing under vacuum at 90°C for 5 h. A ~45 Å thick layer at the free polymer surface was observed in the as-prepared samples that has a density about half the value of bulk PMMA. After heating above 110°C, this diffuse layer disappeared and the thin film density profile was transformed to one with a sharp free polymer surface. This transition was found to be irreversible. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
本文研究了Si/Si02、Si/Si—H基底与聚苯乙烯(Ps)之间的界面相互作用对Ps薄膜的玻璃化转变及相关力学性能的影响.结果显示,无论何种基底,Ps薄膜的玻璃化转变温度(L)都随其厚度降低而降低.但相同厚度(〈110nm)下,以Si/Si-H为基底时Ps薄膜的瓦比以Si/Si02为基底的PS薄膜高.Si/Si02表面Ps薄膜疋开始下降的临界厚度为110nm,远高于以Si/Si—H为基底时的40nm.对Ps薄膜的膨胀系数和弹性模量进行研究,也得到相似的临界厚度.另外,与Si/Si02基底相比,在Si/Si-H上的Ps薄膜具有更低的膨胀系数以及较高弹性模量.可能原因是Si/Si-H与Ps具有较强的相互作用,限制了该界面分子的运动能力,导致基底/PS界面效应对薄膜分子运动的影响力增强,造成该薄膜瓦的厚度依赖性下降,并呈现出相对较硬的力学特征.  相似文献   

6.
近年来 ,在简单体系上形成复杂规则的图案已引起诸多学者的注意 ,其中以聚合物为母体的体系发展了模板、局部紫外照射和激光诱导等一系列技术 ,从而得到可控的表面图案[1~ 6] .本文用激光刻蚀法对溅射在聚合物膜上的金属薄膜进行处理 ,在热诱导情况下使金属 /聚合物膜系表面产生了规则的图案 .薄膜热应力的可控释放作用和激光刻蚀造成的区域局限作用被认为是诱导这种可控图案产生的两种基本要素 .通过控制激光刻蚀区域 ,可控制薄膜表面形貌变化 ,从而实现可控的图案化设计 .1 实验部分1.1 原料及仪器 聚苯乙烯 (PS) :北京燕山石油化工…  相似文献   

7.
8.
Thin polymeric films are increasingly being utilized in diverse technological applications, and it is crucial to have a reliable method to characterize the stability of these films against dewetting. The parameter space that influences the dewetting of thin polymer films is wide (molecular mass, temperature, film thickness, substrate interaction) and a combinatorial method of investigation is suitable. We thus construct a combinatorial library of observations for polystyrene (PS) films cast on substrates having orthogonal temperature and surface energy gradients and perform a series of measurements for a range of molecular masses (1800 g/mol < M < 35 000 g/mol) and film thicknesses h (30 nm < h < 40 nm) to explore these primary parameter axes. We were able to obtain a near-universal scaling curve describing a wetting-dewetting transition line for polystyrene films of fixed thickness by introducing reduced temperature and surface energy variables dependent on M. Our observations also indicate that the apparent polymer surface tension gamma(p) becomes appreciably modified in thin polymer films from its bulk counterpart for films thinner than about 100-200 nm, so that bulk gamma(p) measurements cannot be used to estimate the stability of ultrathin films. Both of these observations are potentially fundamental for the control of thin film stability in applications where film dewetting can compromise film function.  相似文献   

9.
The stability of ultrathin polymer films plays a crucial role in their technological applications. Here, we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process. We further identify the stability mechanism from the theory of thin film stability. Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor. Physical aging can greatly improve the stability of thin polymer films when the aging temperature T_(aging1)T_g. A thinner PS film more quickly reaches a stable state via physical aging. At short aging time, the formation of the adsorbed layer can reduce the polar interaction; however, it slightly influences the stability of thin polymer films in the solvent-induced process. At later aging stage,the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature T_(aging1) plays an important role in stabilizing the thin polymer films. However, at T_(aging2)T_g, the process of physical aging slightly influences the stability of the thin polymer films.The formation of the adsorbed layer at T_(aging2) can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process. These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.  相似文献   

10.
The dynamic behavior of thin polymer films is of interest in the fabrication of microelectronics and optoelectronics and in the coatings industry. It is known that polymer relaxation is affected by film thickness and the particular substrate/polymer pair. We previously used a spectroscopic ellipsometer to investigate the glass transition in thin films. In addition to information on the modification of thermal transitions such as the glass‐transition temperature, the speed of data acquisition in an automated, spectroscopic ellipsometer, operated at a single wavelength of 780 nm, allows for the direct observation of the isothermal dimensions of a thin polymer film as a function of time after a rapid temperature change. In this article, we discuss recent results from the observation of the time dependence of film‐normal thickness and normalized, in‐plane, lateral dimension as well as simple fits to this relaxation behavior in terms of a normalized viscosity and relaxation time. The results support a highly asymmetric initial thermal expansion normal to the film followed by close to isotropic relaxation and anisotropic “flow” (the flow in response to the vanishingly small shears of thermal expansion). These features may clarify issues involving the observation of chain confinement in thin polymer films in terms of potential differences between equilibrium and dynamic measurements. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2929–2936, 2000  相似文献   

11.
High-frequency sinusoidal oscillations of a coarse-grained polymer model are used to calculate the local dynamic mechanical properties (DMPs) of free-standing polymer thin films. The storage modulus G(') and loss modulus G(") are examined as a function of position normal to the free surfaces. It is found that mechanically soft layers arise near the free surfaces of glassy thin films, and that their thickness becomes comparable to the entire film thickness as the temperature approaches the glass transition T(g). As a result, the overall stiffness of glassy thin films decreases with film thickness. It is also shown that two regions coexist in thin films just at the bulk T(g); a melt-like region (G(')G(")) in the middle of the film. Our findings on the existence of a heterogeneous distribution of DMPs in free-standing polymer thin films provide insights into recent experimental measurements of the mechanical properties of glassy polymer thin films.  相似文献   

12.
Thin films of different polymers - poly(styrene) (PS), poly(methylmethacrylate) (PMMA), poly(vinylcarbazole) (PVCz), poly(vinylchloride) (PVC) and poly(vinylidene fluoride) (PVDF) - were deposited by spin-coating or by vapor deposition. On these polymers, thin films of (hexadecafluorophthalocyaninato)-oxovanadium (F16PcVO) were prepared by physical vapor deposition. The growth of these films was monitored in situ by optical spectroscopy. The optical absorbance spectra were analyzed based on the coupling of transition dipoles to obtain information on the intermolecular arrangement of chromophores in the films. In all of these samples, the molecules are oriented with their molecular plane preferentially perpendicular to the substrate surface. This gives the desired overlap of the π-systems for electric conductance parallel to the substrate. Differences in the interactions were detected when deposition temperatures below or above the glass transition temperature of a given polymer were compared. The morphology of the polymer films and the deposited semiconductors were investigated by atomic force microscopy and scanning electron microscopy. The influence of the chosen substrate on the film structure is determined. The optical and electric properties of the films could thereby be influenced and the applicability of such films as active layers in organic thin film transistors is discussed.  相似文献   

13.
We experimentally establish a phase diagram of thin films of concentrated solutions of a cylinder forming polystyrene-block-polybutadiene-block-polystyrene triblock copolymer in chloroform. During annealing the film forms islands and holes with energetically favored values of film thickness. The thin film structure depends on the local thickness of the film and the polymer concentration. Typically, at a thickness close to a favored film thickness parallel orientation of cylinders is observed, while perpendicular orientation is formed at an intermediate film thickness. At high polymer concentration the cylindrical microdomains reconstruct to a perforated lamella structure. Deviations from the bulk structure, such as the perforated lamella and a wetting layer are stabilized in films thinner than approximately 1.5 domain spacings.  相似文献   

14.
The effect of confinement on the kinetics of the surface hydrolysis of polystyrene-block-poly(tert-butyl acrylate) (PS(n)-b-PtBA(m)) thin films on oxidized silicon substrates in 3 M aqueous hydrochloric acid was systematically investigated. As shown by X-ray photoelectron spectroscopy (XPS) and contact angle measurements, a skin layer of acid-sensitive PtBA is present on the surface of PS(n)-b-PtBA(m) films, consistent with the lower surface tension of PtBA compared to that of PS. The thickness of the skin layer was determined by angle-dependent XPS as approximately 8 nm for PS(690)-b-PtBA(1210). Tapping mode atomic force microscopy showed an increasing surface coverage of swollen poly(acrylic acid)-rich globules with increasing hydrolysis time. Using ex situ Fourier transform infrared spectroscopy, the reaction kinetics was determined quantitatively as a function of temperature, polymer film thickness, thermal pretreatment of the films, and block copolymer composition. The initial stages of the hydrolysis can be described as a pseudo-first-order reaction under all conditions investigated. The corresponding rate constants were found to be 2 orders of magnitude lower than those reported for the hydrolysis of tert-butyl acetate in solution and depended linearly on the fraction of PtBA exposed at the surface. However, the polymer film thickness, thermal pretreatment of the films, block copolymer composition, and local composition did not affect the rate constants. The negative value of the activation entropy (DeltaS(298)++ = -103 J/mol K), determined according to the Arrhenius equation and transition state theory, indicates that the tightness of the transition state is more pronounced in the PS(n)-b-PtBA(m) film compared to reactions in solution. Thus, the spatial constraints due to the incorporation of the reactive ester groups in thin polymer films are responsible for the observed reduced reactivity.  相似文献   

15.
新型光取向液晶聚合物的制备及其性能表征   总被引:2,自引:0,他引:2  
目前,液晶分子常规的定向方法是对涂有定向膜的基片进行摩擦,这种方法简单、方便,然而在摩擦过程中却难以避免产生机械划痕、污染或静电,影响了液晶分子取向的均匀性,光控取向方法是近年来发展起来的一种液晶定向新技术,即通过激光或偏振紫外光照射,引发基片上的聚合物薄膜发生光致聚合、光致异构或光致分解反应,产生表面的各向异性,进而诱导液晶分子取向。  相似文献   

16.
A functional polymer (PVK-C60), containing carbazole moieties (electron donors) and fullerene moieties (electron-acceptors) in a molar ratio of about 100:1, was synthesized via covalent tethering of C60 to poly(N-vinylcarbazole) (PVK). The molecular structure and composition of PVK-C60 were characterized by FTIR, Raman, and UV-vis absorption spectroscopy, gel permeation chromatography (GPC), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CyV). The C60-modified PVK exhibited an enhanced glass-transition temperature (Tg = 226 degrees C) and good solubility in organic solvents such as toluene, tetrahydrofuran, chloroform, and N,N-dimethylformamide (DMF). It could be cast into transparent films from solutions. For a thin film of PVK-C60 sandwiched between an indium tin oxide (ITO) electrode and an Al electrode (ITO/PVK-C60/Al), the device behaved as nonvolatile flash (rewritable) memory with accessible electronic states that could be written, read, and erased. The polymer memory exhibited an ON/OFF current ratio of more than 105 and write/erase voltages around -2.8 V/+3.0 V. Both the ON and OFF states were stable under a constant voltage stress of -1 V for 12 h and survived up to 108 read cycles at -1 V under ambient conditions.  相似文献   

17.
Optically transparent and electrically conductive nanocomposite thin films consisting of multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs) and myoglobin molecules that glue GNPs and MWCNTs together are fabricated for the first time on glass substrates from aqueous solution. The nanocomposite thin film is capable of varying its resistance, impedance or optical transmittance at room temperature in response to changes in ambient humidity. The conductometric sensitivity to relative humidity (RH) of the nanocomposite thin film is compared with those of the pure and Mb-functionalized MWCNT layers. The pure MWCNT layer shows a small increase in its resistance with increasing RH due to the effect of p-type semiconducting nanotubes present in the film. In contrast, a four times higher sensitivity to RH is observed for both the nanocomposite and Mb-functionalized MWCNT thin films. The sensitivity enhancement is attributable to swelling of the thin films induced by water absorption in the presence of Mb molecules, which increases the inter-nanotube spacing and thereby causes a further increase of the film resistance. A humidity change as low as DeltaRH=0.3 % has been readily detected by conductometry using the nanocomposite thin film.  相似文献   

18.
Hydrophobic films of polystyrene synthesized in bulk (PS) and by emulsion polymerization in the presence of the cationic surfactant cetyltrimethylammonium bromide (PS-CTAB) or the anionic surfactant sodium dodecyl sulfate (PS-SDS) were characterized by means of ellipsometry, contact angle measurements, and atomic force microscopy. Thin (approximately 65 nm) and thick (approximately 300 nm) films were spin-coated on hydrophilic silicon wafers. PS films presented scarcely tiny holes, while PS-CTAB and PS-SDS films presented holes and protuberances. The former were attributed to dewetting effects and the latter to surfactant clusters. The films were exposed to water or to a 0.1 mol/L NaCl solution for 24 h. Ex situ measurements evidenced strong topographic alterations after the exposure to the fluid. A model based on the diffusion of water (or electrolyte) molecules to the polymer/silcon dioxide interface through holes or defects on the film edges was proposed to explain the appearance of wrinkles and protuberances. In situ ellipsometric measurements were performed and compared with simulations, which considered either a water layer between a polymer and a silcon dioxide layer or an air layer between a polymer and water (medium). In the case of thin PS films, the ellipsometric angles evidenced a very thin (0.5-1.0 nm) air layer between water and the PS films. Upon increasing the PS film thickness, no air layer could be observed by ellipsometry. Regardless of the thickness, the ellipsometric data obtained for PS-CTAB and PS-SDS films did not indicate the presence of an air layer between them and the aqueous media. The dramatic changes in the topography of PS, PS-CTAB, and PS-SDS after immersion in salt solution were explained with proposed models. From a practical point of view, this study is particularly relevant because many hydrophobic polymers are used as substrates for biomedical purposes, where the physiological ionic strength is 0.15 mol/L NaCl.  相似文献   

19.
The unique properties of Langmuir film formation were utilized in assembling a thin skin of an asymmetric membrane. An octadecyltrimethoxysilane (ODTMS) Langmuir monolayer was formed at the air–water interface and served as the substrate for growing a bulky sol–gel polymer in situ. The latter was based on the electrochemical deposition of tetramethoxysilane dissolved in the water subphase by means of horizontal touch electrochemistry. The resultant asymmetric layer that consisted of a thin hydrophobic ODTMS Langmuir film connected to a bulk hydrophilic sol–gel network was studied in situ and ex situ by using various techniques, such as cyclic voltammetry, electrochemical impedance spectroscopy (EIS), scanning electron microscopy, transmission electron microscopy (TEM), and goniometry. We found that a porous hydrophilic film grew on top of a hydrophobic layer as was evident from TEM, contact angle, and EIS analyses. The film thickness and film permeability could be controlled by changing the deposition conditions such as the potential window applied and its duration. Hence, this method offers an alternative approach for assembling asymmetric films for various applications  相似文献   

20.
Surface Enhanced Raman Spectroscopy on Carbon Filaments   总被引:1,自引:0,他引:1  
 A method for analysis of carbon-containing thin films by using surface enhanced Raman spectroscopy (SERS) is described. Thin films of boron nitride or silicon carbide which are deposited on carbon filaments were coated additionally with silver nanoparticles. A very thin plasma polymer film was deposited on the silver particles to give a better long time stability. Using these layers, very intensive carbon band were detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号