首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the efficacy of 5-aminolevulinic acid-based (ALA) photodynamic therapy (PDT), different ALA derivatives are presently being investigated. ALA esters are more lipophilic and therefore may have better skin penetration properties than ALA, possibly resulting in enhanced protoporphyrin IX (PpIX) production. In previous studies it was shown that ALA pentyl ester (ALAPE) does considerably enhance the PpIX production in cells in vitro compared with ALA. We investigated the in vivo PpIX fluorescence kinetics after application of ALA and ALAPE to hairless mice with and without UVB-induced early skin cancer. ALA and ALAPE (20% wt/wt) were applied topically to the mouse skin and after 30 min, the solvent was wiped off and PpIX fluorescence was followed in time with in vivo fluorescence spectroscopy and imaging. At 6 and 12 h after the 30 min application, skin samples of visible lesions and adjacent altered skin (UVB-exposed mouse skin) and normal mouse skin were collected for fluorescence microscopy. From each sample, frozen sections were made and phase contrast images and fluorescence images were recorded. The in vivo fluorescence kinetics showed that ALAPE induced more PpIX in visible lesions and altered skin of the UVB-exposed mouse skin, but not in the normal mouse skin. In the microscopic fluorescence images, higher ALAPE-induced PpIX levels were measured in the stratum corneum, but not in the dysplastic layer of the epidermis. In deeper layers of the skin, PpIX levels were the same after ALA and ALAPE application. In conclusion, ALAPE does induce higher PpIX fluorescence levels in vivo in our early skin cancer model, but these higher PpIX levels are not located in the dysplastic layer of the epidermis.  相似文献   

2.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

3.
An important limitation of topical 5-aminolevulinic acid (ALA)-based photodetection and photodynamic therapy is that the amount of the fluorescing and photosensitizing product protoporphyrin IX (PpIX) formed is limited. The reason for this is probably the limited diffusion of ALA through the stratum corneum. A solution to this problem might be found in the use of ALA derivatives, as these compounds are more lipophilic and therefore might have better penetration properties than ALA itself. Previous studies have shown that ALA hexyl ester (ALAHE) is more successful than ALA for photodetection of early (pre)malignant lesions in the bladder. However, ALA pentyl ester slightly increased the in vivo PpIX fluorescence in early (pre)malignant lesions in hairless mouse skin compared to ALA. The increased PpIX fluorescence is located in the stratum corneum and not in the dysplastic epidermal layer. In the present study, ALA- and ALAHE-induced PpIX fluorescence kinetics are compared in the normal nude mouse skin, of which the permeability properties differ from the bladder. Application times and ALA(HE) concentrations were varied, the effect of a penetration enhancer and the effect of tape stripping the skin before or after application were investigated. Only during application for 24 h, did ALAHE induce slightly more PpIX fluorescence than ALA. After application times ranging from 1 to 60 min, ALA-induced PpIX fluorescence was higher than ALAHE-induced PpIX fluorescence. ALA also induced higher PpIX production than ALAHE after 10 min of application with concentrations ranging from 0.5 to 40%. The results of experiments with the penetration enhancer and tape stripping indicated that the stratum corneum acts a barrier against ALA and ALAHE. Use of penetration enhancer or tape stripping enhanced the PpIX production more in the case of ALAHE application than in the case of ALA application. This, together with the results from the different application times and concentrations indicates that ALAHE diffuses more slowly across the stratum corneum than ALA.  相似文献   

4.
We have previously shown that light fractionation during topical aminolevulinic acid based photodynamic therapy (ALA-PDT) with a dark interval of 2h leads to a significant increase in efficacy in both pre-clinical and clinical PDT. However this fractionated illumination scheme required an extended overall treatment time. Therefore we investigated the relationship between the dark interval and PDT response with the aim of reducing the overall treatment time without reducing the efficacy. Five groups of mice were treated with ALA-PDT using a single light fraction or the two-fold illumination scheme with a dark interval of 30 min, 1, 1.5 and 2h. Protoporphyrin IX fluorescence kinetics were monitored during illumination. Visual skin response was monitored in the first seven days after PDT and assessed as PDT response. The PDT response decreases with decreasing length of the dark interval. Only the dark interval of 2h showed significantly more damage compared to all the other dark intervals investigated (P<0.05 compared to 1.5h and P<0.01 compared to 1h, 30 min and a single illumination). No relationship could be shown between the utilized PpIX fluorescence during the two-fold illumination and the PDT response. The rate of photobleaching was comparable for the first and the second light fraction and not dependent of the length of dark interval used. We conclude that in the skin of the hairless mouse the dark interval cannot be reduced below 2h without a significant reduction in PDT efficacy.  相似文献   

5.
Photodynamic therapy (PDT) is a relatively new approach to the treatment of neoplasms which involves the use of photoactivatable compounds to selectively destroy tumors. 5-Aminolevulinic acid (ALA) is an endogenous substance which is converted to protoporphyrin IX (PpIX) in the synthetic pathway to heme. PpIX is a very effective photosensitizer. The goal of this study was to evaluate the effect of PDT using topical ALA on normal guinea pig (g.p.) skin and g.p. skin in which the stratum corneum was removed by being tape-stripped (TS). Evaluation consisted of gross examination, PpIX fluorescence detection, reflectance spectroscopy, and histology. There was no effect from the application of light or ALA alone. Normal non-TS g.p. skin treated with ALA and light was unaffected unless high light and ALA doses were used. Skin from which the stratum corneum was removed was highly sensitive to treatment with ALA and light: 24 h after treatment, the epidermis showed full thickness necrosis, followed by complete repair within 7 d. Time-dependent fluorescence excitation and emission spectra were determined to characterize the chromophore and to demonstrate a build-up of the porphyrin in the skin. These data support the view that PDT with topical ALA is a promising approach for the treatment of epidermal cutaneous disorders.  相似文献   

6.
Significant amounts of protoporphyrin IX (PpIX) are formed after 6 min of topical application of 5-aminolevulinic acid (ALA) and its hexylester derivative, whereas PpIX is formed after 10 min of topical application of ALA-methylester derivative in normal mouse skin at 37 degrees C. Lowering the skin temperature to 28-32 degrees C by the administration of the anesthetic Hypnorm-Dormicum reduces the PpIX fluorescence by a factor of 2-3. Practically no PpIX was formed as long as the skin temperature was kept at 12-18 degrees C. At around 30 degrees C PpIX fluorescence appears later after application of ALA-ester derivatives (14-20 min) than after application of ALA (8 min), indicating differences in their bioavailability (delayed penetration through the stratum corneum, cellular uptake, conversion to ALA, PpIX production) in mouse skin in vivo. The difference in lag time in the PpIX formation after application of ALA and ALA-esters may be partly related to deesterification of the ALA-ester molecules. The temperature dependence of PpIX production may be used for improvement of photodynamic therapy with ALA and ALA-ester derivatives, where accumulation of PpIX can be selectively enhanced by increasing the temperature of the target tissue.  相似文献   

7.
Several options were investigated to increase the efficacy of photodynamic therapy (PDT) using protoporphyrin IX (PpIX) induced by topically applied 5-aminolevulinic acid (ALA). Hairless mice with normal skin or UVB-light-induced skin changes were used as a model. In the first part of the study animals were illuminated immediately (t = 4) or 6 h (t = 10, PpIX fluorescence maximum) after the end of a 4 h ALA application. A total incident light fluence of 100 J/cm2 (514.5 nm) was delivered at a fluence rate of 100 or 50 mW/cm2. The PDT-induced damage to normal skin was more severe after treatment at t = 10 than at t = 4. Illumination at 50 mW/cm2 caused significantly more visible damage than the same light fluence given at 100 mW/cm2. For UVB-illuminated skin, different intervals or fluence rates made no significant difference in the severity of damage, although some qualitative differences occurred. In situ fluence rate measurements during PDT indicated vasoconstriction almost immediately after the start of the illumination. A fluorescein exclusion assay after PDT demonstrated vasoconstriction that was more pronounced in UVB-treated skin than in normal skin. The second part of the study examined the effect of two illuminations. The first illumination bleaches the PpIX fluorescence. At the start of the second illumination, new PpIX had been formed. Light of 514.5 nm was delivered at 100 mW/cm2 to a total incident light fluence of 200 J/cm2 at t = 4 (single illumination) or 100 J/cm2 at t = 4 plus 100 J/cm2 at t = 10. There was no visual difference in skin damage between 100 and 200 J/cm2 single illumination. Two-fold illumination (100 + 100 J/cm2) caused significantly more skin damage, indicating a potentially successful option for increasing the efficacy of topical ALA-PDT.  相似文献   

8.
Barrett's esophagus (BE) can experimentally be treated with 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT), in which ALA, the precursor of the endogenous photosensitizer protoporphyrin IX (PpIX) and subsequent irradiation with laser light are applied to destroy the (pre)malignant tissue. Accurate dosimetry is critical for successful ALA-PDT. Here, in vivo dosimetry and kinetics of PpIX fluorescence photobleaching were studied in a rat model of BE. The fluence and fluence rate were standardized in vivo and PpIX fluorescence was measured simultaneously at the esophageal wall during ALA-PDT and plotted against the delivered fluence rather than time. Rats with BE were administered 200 mg kg(-1) ALA (n = 17) or served as control (n = 4). Animals were irradiated with 633 nm laser light at a measured fluence rate of 75 mW cm(-2) and a fluence of 54 J cm(-2). Large differences were observed in the kinetics of PpIX fluorescence photobleaching in different animals. High PpIX fluorescence photobleaching rates corresponded with tissue ablation, whereas low rates corresponded with no damage to the epithelium. Attempts to influence tissue oxygenation by varying balloon pressure and ventilation were shown not to be directly responsible for the differences in effect. In conclusion, in vivo dosimetry is feasible in heterogeneous conditions such as BE, and PpIX fluorescence photobleaching is useful to predict the tissue response to ALA-PDT.  相似文献   

9.
The influence of skin permeation enhancers, such as dimethyl sulphoxide (DMSO) and 1-[2-(decylthio)ethyl]azacyclopentan-2-one (HPE-101), Labrafac CC, Labrafil, Labrasol and Transcutol in a concentration of 10% (wt./wt.) on the formation of porphyrins in normal mouse skin from topical application of creams with methyl 5-aminolevulinate (MAL) was studied. The concentration of porphyrins in the mouse skin was determined by direct fluorescence measurements. The results show that studied permeation enhancers increase the formation of porphyrins, and therefore also the skin penetration 2% MAL whereas for 10% and 20% (wt./wt.) MAL concentrations only DMSO, HPE-101 and Labrafac CC increased the porphyrin formation. At all studied MAL concentrations DMSO gave the largest enhancing effect, similarly to that of HPE-101. This suggests that in 2-20% MAL creams HPE-101 may be substituted by Labrafac CC to reduce skin irritation induced by HPE-101 without impairing the porphyrin formation.  相似文献   

10.
Fluorescence photobleaching of protoporphyrin IX (PpIX) during superficial photodynamic therapy (PDT), using 514 nm excitation, was studied in UVB-induced tumor tissue in the SKH-HR1 hairless mouse. The effects of different irradiance and light fractionation regimes upon the kinetics of photobleaching and the PDT-induced damage were examined. Results show that the rate of PpIX photobleaching (i.e., fluorescence intensity vs fluence) and the PDT damage both increase with decreasing irradiance. We have also detected the formation of fluorescent PpIX photoproducts in the tumor during PDT, although the quantity recorded is not significantly greater than generated in normal mouse skin, using the same light regime. The subsequent photobleaching of the photoproducts also occurs at a rate (vs fluence) that increases with decreasing irradiance. In the case of light fractionation, the rate of photobleaching increases upon renewed exposure after the dark period, and there is a corresponding increase in PDT damage although this increase is smaller than that observed with decreasing irradiance. The effect of fractionation is greater in UVB-induced tumor tissue than in normal tissue and the damage is enhanced when fractionation occurs at earlier time points. We observed a variation in the distribution of PDT damage over the irradiated area of the tumor: at high irradiance a ring of damage was observed around the periphery. The distribution of PDT damage became more homogeneous with both lower irradiance and the use of light fractionation. The therapeutic dose delivered during PDT, calculated from an analysis of the fluorescence photobleaching rate, shows a strong correlation with the damage induced in normal skin, with and without fractionation. The same correlation could be made with the data obtained from UVB-induced tumor tissue using a single light exposure. However, there was no such correlation when fractionation schemes were employed upon the tumor tissue.  相似文献   

11.
The pharmacokinetics of 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) in lesions of urethral condylomata acuminata were investigated. Sixty patients (20 to 60 years old, 48 male and 12 female) were divided randomly into five groups and received topic application of different concentrations of ALA solution (0.5%, 1%, 3%, 5% or 10%). Biopsy was performed between 1 and 7 h and specimens were subjected to histological, PpIX fluorescence and human papillomavirus (HPV) DNA typing analyses. Fluorescence examination confirmed that ALA-induced PpIX fluorescence was dominantly distributed in the HPV-infected epidermis. In contrast, only a minimal amount of PpIX fluorescence was detected in the dermis. The maximal fluorescence intensity was detected at 5 h incubation. Higher ALA concentration (e.g. 5% and 10%) produced a stronger intensity. These results suggest that the topical application of 5-10% ALA solution for 3-5 h is the optimal condition for the photodynamic therapy of urethral condylomata acuminata. The selective damage of the condylomata acuminata lesions in the epidermis without damaging the dermis ensures a better control of recurrence and side effects such as ulceration or scarring. DNA typing showed that all patients were positive for low risk-HPV DNA and among them 18.3% of patients harbored high risk-HPV DNA.  相似文献   

12.
5-Aminolevulinic acid (ALA) is a natural precursor of protoporphyrin IX (PpIX) and heme in cells. Photodynamic therapy (PDT) utilizes a metabolic imbalance in cancer cells, leading to increased PpIX generation from exogenous ALA. Due to chemical instability of ALA in therapeutic concentrations at pH values larger than 5.0 and at high temperatures, it looses its activity by spontaneous dimerization to 2,5-dicarboxyethyl-3,6-dihydropyrazine (DHPY). ALA esters are now supplementing ALA in PDT, but little is known about their stability. We have studied the stability of ALA and its methyl ester (MAL) stored under different conditions (temperatures, pH values) by measuring their ability to generate PpIX. 100mM solutions of both compounds were found to be stable at pH 4 and at 4 degrees C. However, at pH 5.5 they lost almost 10% of the initial activity during 5days of storage at 4 degrees C. The fastest decay of ALA and MAL was seen at pH 7.4 and at 37 degrees C, and followed first order kinetics. At pH 7.4 and at 4 degrees C MAL lost its PpIX producing ability more slowly than at 37 degrees C. Our work shows that solutions should be prepared immediately before use and stored at low temperatures. The pH of stock solutions should not exceed 5.  相似文献   

13.
The kinetics of accumulation of protoporphyrin IX (PpIX) after topical application of 5-aminolevulinic acid (ALA) and its methylester (5-aminolevulinic acid methylester [ALA-Me]) was studied on rat oral mucosa. The accumulation of PpIX in mucosa and skin after intravenous injection of ALA and ALA-Me was also studied. The elimination rate of PpIX was dependent on drug and dose as well as on administration route. Application of ALA on rat oral mucosa and skin caused a systemic effect with PpIX building up in remote skin sites not exposed to the drugs. No such systemic effect was seen after application of ALA-Me either in mucosa or on skin. Intravenous injection of the drugs (0.2 g/kg) leads to more fluorescence in the skin than topical application of the drug (20%). For mucosa, the opposite is true. Maximal PpIX fluorescence appeared later after application of high concentrations of the drugs (around 8 h for 5% and 20% wt/wt) than after application of low concentrations (around 3-5 h for 1% and 2% wt/wt).  相似文献   

14.
The temperature dependence of the uptake phase of 5-aminolevulinic acid (ALA) and the following production phase of protoporphyrin IX (PpIX) in normal mouse skin was investigated. A cream containing 20% ALA was topically applied on the skin for 10 min. The amount of ALA-induced PpIX was evaluated by measuring the fluorescence of PpIX from the treated skin. No measurable amount of PpIX was found in the skin immediately after 10 min application of ALA. The penetration of ALA into the skin was almost temperature independent while the following production of PpIX was found to be a strongly temperature-dependent process. Practically no PpIX was formed in the skin as long as skin temperature was kept low (12 degrees C).  相似文献   

15.
Light fractionation with dark periods of the order of hours has been shown to considerably increase the efficacy of 5-aminolevulinic acid-photodynamic therapy (ALA-PDT). Recent investigations have suggested that this increase may be due to the resynthesis of protoporphyrin IX (PpIX) during the dark period following the first illumination that is then utilized in the second light fraction. We have investigated the kinetics of PpIX fluorescence and PDT-induced damage during PDT in the normal skin of the SKH1 HR hairless mouse. A single illumination (514 nm), with light fluences of 5, 10 and 50 J cm-2 was performed 4 h after the application of 20% ALA, to determine the effect of PDT on the synthesis of PpIX. Results show that the kinetics of PpIX fluorescence after illumination are dependent on the fluence delivered; the resynthesis of PpIX is progressively inhibited following fluences above 10 J cm-2. In order to determine the influence of the PpIX fluorescence intensity at the time of the second illumination on the visual skin damage, 5 + 95 and 50 + 50 J cm-2 (when significantly less PpIX fluorescence is present before the second illumination), were delivered with a dark interval of 2 h between light fractions. Each scheme was compared to illumination with 100 J cm-2 in a single fraction delivered 4 or 6 h after the application of ALA. As we have shown previously greater skin damage results when an equal light fluence is delivered in two fractions. However, significantly more damage results when 5 J cm-2 is delivered in the first light fraction. Also, delivering 5 J cm-2 at 5 mW cm-2 + 95 J cm-2 at 50 mW cm-2 results in a reduction in visual skin damage from that obtained with 5 + 95 J cm-2 at 50 mW cm-2. A similar reduction in damage is observed if 5 + 45 J cm-2 are delivered at 50 mW cm-2. PpIX photoproducts are formed during illumination and subsequently photobleached. PpIX photoproducts do not dissipate in the 2 h dark interval between illuminations.  相似文献   

16.
Experimental therapies for Barrett's esophagus, such as 5-aminolevulinic acid (ALA)-based photodynamic therapy (PDT), aim to ablate the premalignant Barrett's epithelium. However, the reproducibility of the effects should be improved to optimize treatment. Accurate irradiation with light of a proper wavelength (633 nm), fluence and fluence rate has shown to be critical for successful ALA-PDT. Here, we have used in situ light dosimetry to adjust the fluence rate measured within the esophagus for individual animals and monitored protoporphyrin IX (PpIX) fluorescence photobleaching simultaneously. Rats were administered 200 mg kg-1 ALA (n = 14) or served as control (n = 7). Animals were irradiated with an in situ measured fluence rate of 75 mW cm-2 and a fluence of 54 J cm-2. However, this more accurate method of light dosimetry did not decrease the variation in tissue response. Large differences were also observed in the dynamics of PpIX fluorescence photobleaching in animals that received the same measured illumination parameters. We found that higher PpIX fluorescence photobleaching rates corresponded with more epithelial damage, whereas lower rates corresponded with no response. A two-phased decay in PpIX fluorescence could be identified in the response group, with a rapid initial phase followed by a slower rate of photobleaching. Non-responders did not show the rapid initial decay and had a significantly lower rate of photobleaching during the second phase of the decay (P = 0.012).  相似文献   

17.
INTRODUCTION: Topical application of 5-aminolevulinic acid (5-ALA) by means of a rinsing solution has been shown to be a promising new procedure in the diagnosis of oral malignancies. However, for assessing the reliability of this method regarding fluorescence-guided tumor resections and photodynamic therapy, further information on the distribution and penetration depth of 5-ALA-induced protoporphyrin IX (PPIX) in the tissue is needed. METHODS: 24 patients suffering from oral cancer were included in this investigation. Biopsies were taken immediately after fluorescence examination and either used as native sections for immediate fluorescence microscopic examination (n = 3) or shock frozen in liquid nitrogen and prepared as frozen sections (n = 46). Fluorescence imaging and digital image processing were utilized in order to determine the presence of PPIX in regions of various histologies as well as the penetration depth of PPIX into solid tumor. RESULTS: PPIX fluorescence in the tissue was limited to the epithelium. Both normal and dysplastic epithelium showed PPIX fluorescence. In the stroma, no PPIX fluorescence was found. In some cases (n = 3/4) invasive carcinomas did not show PPIX fluorescence, while the adjacent or overlying normal epithelium was strongly fluorescent. The penetration depth of PPIX after topical application of 5-ALA was found to be limited to less than 1 mm. CONCLUSION: PPIX fluorescence induced by topical application of 5-ALA can be very useful in the determination of superficial tumor margins. However, due to the limited penetration depth there is a risk of not accurately recognizing the infiltration depth of solid tumors. The aim of further investigations will be to assess the tissue distribution and depth of penetration of PPIX following systemic application of 5-ALA.  相似文献   

18.
The fluorescence and photosensitivity of endogenously synthesized protoporphyrin IX (PPIX) is increasing used for the diagnosis and treatment of malignant and certain non-malignant diseases. A selective accumulation of PPIX can be induced by application of 5-aminolevulinic acid (5-ALA), which is a precursor of PPIX in the cellular biosynthetic pathway of heme.

The purpose of this study was to monitor the in vivo accumulation of PPIX in different locations of the skin after oral ingestion and to determine the pharmacokinetics of 5-ALA and PPIX in human blood plasma for various routes of application. At the same time we wanted to achieve an optimal treatment scheme but also study possible side-effects of 5-ALA administration.

After oral application of 5-ALA in a concentration of 40 mg kg−1 body weight, the fluorescence intensities of PPIX in the skin showed maxima between 6.5 and 9.8 h depending on the location and decreased to values lower than 5% related to the maximum after a mean time of about 40 h. The measured absolute intensities of PPIX fluorescence varied strongly between different patients and different locations on one patient. In the plasma of blood samples, PPIX could be detected via its fluorescence for all studied routes of application with the exception of the ointment, where PPIX levels were below the detection limit of 1 μg l−1. The highest mean concentration of 742 μg l−1 PPIX in the plasma was measured 6.7 h after oral application. For inhalation of 5-ALA, a mean maximum concentration of 12 μg l−1 could be detected 4.1 h after application, for intravesical instillation, the mean maximum concentration was found to be 1 μg l−1 2.9 h after application. The kinetics of 5-ALA in the plasma peaked much earlier with a maximum concentration of 32 mg l−1 about 30 min. after oral administration. The 5-ALA levels did not exceed normal reference values after topical application.

The results of our experiments suggest that for a systemic application of 5-ALA side-effects in sensitive patients cannot be excluded.  相似文献   


19.
Topical photodynamic therapy (PDT) of superficial basal cell carcinoma (BCC) with 5-aminolevulinic acid (ALA) has achieved promising clinical results. However, the efficacy of this therapy for thick BCC is dramatically decreased by a limited diffusion of hydrophilic ALA into the tumor. Lipophilic esters of ALA may enhance their penetration into the lesion. In this randomized, open clinical study, microscopic fluorescence photometry incorporating a light-sensitive thermo-electrically cooled charge-coupled device (CCD) camera was employed to investigate the penetration of methyl 5-aminolevulinate-induced porphyrin fluorescence in thick BCC lesions. Both the distribution pattern and the amount of porphyrins in 32 lesions of 16 patients were studied after topical application of 16, 80 or 160 mg/g of methyl 5-aminolevulinate for 3 or 18 h. A highly selective and homogeneous distribution of methyl 5-aminolevulinate-induced porphyrin fluorescence was seen in all lesions studied, with much less fluorescence in the adjacent normal skin tissues. In lesions of up to 2 mm thickness the application of 160 mg/g methyl 5-aminolevulinate for 3 h showed the highest ratio of porphyrin fluorescence depth to tumor depth (0.98+/-0.04), thus providing a biologic rationale for a clinical PDT trial with this regimen.  相似文献   

20.
Infrared spectral comparison of 5-aminolevulinic acid and its hexyl ester   总被引:1,自引:0,他引:1  
5-aminolevulinic acid (ALA) and its hexyl ester (ALA-H) are bioorganic molecules, now used as drugs in the study and clinical application of photodynamic therapy (PDT). Their infrared spectra were reported in first time here. The spectral characteristic was found well correlated to their structure feature. The strong peaks of C=O, C-H(2) and O-H band were shown in ALA spectrum. While in case of ALA-H, besides the vibration modes of C=O and CH(2) the additional CH(3) infrared peaks appeared, which correspond with their structural difference. Thus the infrared spectrum could be used to detect and distinguish ALA and ALA-H, which have potential for the mechanism study of ALA and ALA-H based PDT in biological system. Using the infrared spectrum as the probe, the thermal effect on structure stability was detected. Below the temperature of 80 degrees C, the ALA and ALA-H are thermally stable in structure. When temperature reached 120 degrees C, the serious structure breaking (thermal decomposition) happened for both ALA and ALA-H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号