首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new series of new hetero-bimetallic complexes containing iron and ruthenium of the general formula [RuCl(CO)(B)(EPh3)(L)] (where E=P or As; B=PPh3, AsPh3, py or pip; L=ferrocene derived monobasic bidentate thiosemicarbazone ligand) have been synthesized by the reaction between ferrocene-derived thiosemicarbazones and ruthenium(II) complexes of the type [RuHCl(CO)(B)(EPh3)2] (where E=P or As; B=PPh3, AsPh3, py or pip). The new complexes have been characterized by elemental analyses, IR, electronic, NMR (1H, 13C and 31P), EXAFS (extended X-ray absorption fine structure spectroscopy) and cyclic voltammetric techniques. Antibacterial activity of the new complexes has been screened against Escherichia coli, Vibrio cholerae, and Pseudomonas aeruginosa species.  相似文献   

2.
Stable ruthenium(II) complexes of Schiff bases have been prepared by reacting [RuHCl(CO)(PPh3)2(B)] (B = PPh3, pyridine or piperidine) with bis(o-vanillin)ethylenediimine (valen), bis(o-vanillin)propylene-diimine (valpn), bis(o-vanillin)tetramethylenediimine (valtn), bis(o-vanillin)o-phenylenediimine (valphn), bis(salicylaldehyde)tetramethylenediimine (saltn) and bis(salicylaldehyde)o-phenylenediimine (salphn). These complexes have been characterised by elemental analyses, i.r., electronic, 1H- and 31P{1H}-n.m.r. spectral studies. In all the above reactions, the Schiff bases replace two molecules of Ph3P, a hydride and a halide ion from the starting complexes, indicating that the Ru–N bonds present in the complexes containing heterocyclic nitrogen bases are stronger than the Ru–P bond to Ph3P. The new complexes of the general formula [Ru(CO)(B)(L)] (B = PPh3, py or pip; L = tetradentate Schiff bases) have been assigned an octahedral structure. Some of the Schiff bases and the new complexes have been tested against the pathogenic fungus Fusarium sp.  相似文献   

3.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

4.
Complexes of the type [Ru(CO)(EPh(3))(B)(L)] (E = P or As; B = PPh(3), AsPh(3), py or pip; L=dianion of the Schiff bases derived from thiosemicarbazone with acetoacetanilide, acetoacet-o-toluidide and o-chloro acetoacetanilide) have been synthesized from the reactions of equimolar amounts of [RuHCl(CO)(EPh(3))(2)(B)] and Schiff bases in benzene. The new complexes have been characterized by analytical and spectral (IR, electronic, NMR) data. The arrangement of PPh(3) groups around ruthenium metal was determined from (31)P NMR spectra. An octahedral structure has been assigned for all the new complexes. All the complexes exhibited catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in presence of N-methylmorpholine-N-oxide as co-oxidant. The complexes also exhibited antibacterial activity against E. coli, Aeromonas hydrophilla and Salmonella typhi. The activity was compared with standard streptomycin.  相似文献   

5.
The reactions of ruthenium(II) complexes, [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)], with bidentate Schiff base ligands derived by condensing salicylaldehyde with aniline, o-, m- or p-toluidine have been carried out. The products were characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and are formulated as [RuCl(CO)(L)(PPh3)(B)] (L = Schiff base anion; B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. The Schiff bases and the new complexes were tested in vitro to evaluate their activity against the fungus Aspergillus flavus.  相似文献   

6.
The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh3)2(B)] (where E=P; B=PPh3, py or pip: E=As; B=AsPh3) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh3)(B)(L)] (L=anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and 1H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) as the source of oxygen. The formation of high valent Ru(IV)=O species as a catalytic intermediate is proposed for the catalytic process.  相似文献   

7.
The reaction of the chelating ligands (obtained by the condensation of 2-hydroxy-1-naphthaldehyde with various primary amines) with [RuHCl(CO)(EPh(3))(2)(B)] (where E=P; B=PPh(3), py or pip: E=As; B=AsPh(3)) in benzene afforded new stable ruthenium(II) carbonyl complexes of the general formula [Ru(Cl)(CO)(EPh(3))(B)(L)] (L=anion of bidentate Schiff bases). The structure of the new complexes was investigated using elemental analyses, spectral (FT-IR, UV-vis and (1)H NMR) and electrochemical studies and is found to be octahedral. All the metal complexes exhibit characteristic MLCT absorption and luminescence bands in the visible region. The luminescence efficiency of the ruthenium(II) complexes was explained based on the ligand environment around the metal ion. These complexes catalyze oxidation of primary and secondary alcohols into their corresponding carbonyl compounds in the presence of N-methylmorpholine-N-oxide (NMO) as the source of oxygen. The formation of high valent Ru(IV)=O species as a catalytic intermediate is proposed for the catalytic process.  相似文献   

8.
The complexes [Ir(H)2(eta1-N-L)2(PPh3)2]PF6, L = py (1), iQ (2) and pip (3) (py = pyridine, iQ = isoquinoline, pip = piperidine) have been synthesized in high yields by hydrogenation of [Ir(cod)(PPh3)2]PF6 in the presence of the appropriate nitrogen compound. When hydrogen is bubbled through 1,2-dichloroethane solutions of 1 or 2, two new species were formed in each case by C-Cl bond activation of the solvent, Ir(H)2Cl(eta1-N-L)(PPh3)2 (L = py, 4; iQ, 5) and IrH(Cl)2(eta1-N-L)(PPh3)2 (L = py, 6; iQ, 7). Reaction of 3 with py or iQ yielded complexes 1 and 2, respectively, while under a slow stream of carbon monoxide the complex [Ir(H)2(eta1-N-pip)(CO)(PPh3)2]PF6 (8) was produced. Complex 3 also reacts with halide and 4-bromothiophenolate anions leading to the corresponding neutral species Ir(H)2(X)(eta1-N-pip)(PPh3)2, X = Cl (9), I (10) and 4-BrC6H4S (11), or with [MoS4]2- to yield the hetero-bimetallic complex [Ir(H)(PPh3)2(mu-S)2MoS2]- (13). All the new complexes were characterized by analytical and spectroscopic methods. The X-ray structures of , 2 and 8 consist of distorted octahedra with a mutually cis disposition of the two hydrides and mutually trans phosphines. Complexes 1, 2 and 3 and their derivatives are of interest as models for the chemisorption step in hydrodenitrogenation reactions on solid catalysts.  相似文献   

9.
The products obtained by reacting ruthenium (II) complexes [RuHCl(CO)(PPh3)2(B)] [B = PPh3, pyridine (py) or piperidine (pip)] with tridentate Schiff base ligands derived by condensing salicylaldehyde or o-vanillin with o-aminophenol and o-aminothiophenol, have been characterised by analytical, i.r., electronic, 1H-n.m.r. and 31P-n.m.r. spectral studies and formulated as [Ru(L)(CO)(PPh3)(B)] (L = bifunctional tridentate Schiff base anion, B = PPh3, py or pip). An octahedral structure has been tentatively proposed for the new complexes. Some have been tested for the in vitro growth inhibitory activity against bacteria Escherichia coli, Bacillus sp. and Pseudomonas sp.  相似文献   

10.
The first neutral, [IrClF(2)(NHC)(COD)] and [IrClF(2)(CO)(2)(NHC)] (NHC = IMes, IPr), and cationic, [IrF(2)py(IMes)(COD)][BF(4)] and [IrF(2)L(CO)(2)(NHC)][BF(4)] (NHC = IMes, L = PPh(2)Et, PPh(2)CCPh, py; NHC = IPr, L = py), NHC iridium(III) fluoride complexes, have been synthesised by the xenon difluoride oxidation of iridium(I) substrates. The stereochemistries of these iridium(III) complexes have been confirmed by multinuclear NMR spectroscopy in solution and no examples of fluoride-trans-NHC arrangements were observed. Throughout, CO was found to be a better co-ligand for the stabilisation of the iridium(III) fluoride complexes than COD. Attempts to generate neutral trifluoroiridium(III) complexes, [IrF(3)(CO)(NHC)], via the ligand substitution reaction of [IrF(3)(CO)(3)] with the free NHCs were unsuccessful.  相似文献   

11.
通过[RuHCl(CO)(PPh3)2(B)] (B=PPh3, 吡啶 (py), 哌啶 (pip), 吗啉 (morph))与适当的席夫碱按1∶1的物质的量的比反应,合成了二齿和四齿席夫碱钌(Ⅱ)配合物。所用席夫碱配体通过S-苄基二硫代肼基甲酸酯与2,3-丁二酮(物质的量的比分别为1∶1和1∶2)的缩合反应制得。通过元素分析和多种物理化学方法对钌(Ⅱ)配合物和其席夫碱配体进行了表征。钌(Ⅱ)配合物为六配位的反磁性物质。用三种细菌对席夫碱配体及其钌(Ⅱ)配合物的抗微生物活性进行了筛选试验。  相似文献   

12.
Ruthenium(III) complexes of Schiff bases derived from the condensation of salicylaldehyde or o-vanillin with diamines have been prepared and characterised. The complexes are of the type [RuX(EPh3)(L)] [X=Cl or Br; E=P or As; L=bis(salicylaldehyde)tetramethylenediimine, bis(salicylaldehyde)o-phenylenediimine, bis(o-vanillin)ethylenediimine, bis(o-vanillin)propylenediimine, bis(o-vanillin)tetramethylenediimine or bis(o-vanillin)o-phenylenediimine]. The Schiff bases behave as dibasic tetradentate ligands.  相似文献   

13.
Reactions of ruthenium(II) complexes [RuHX(CO)(EPh3)2(B)] (X = H or Cl; B = EPh3, pyridine (py) or piperidine (pip); E = P or As) with bidentate Schiff base ligands derived by condensingo- hydroxyacetophenone with aniline,o- orp-methylaniline have been carried out. The products were characterized by analytical, IR, electronic and1H-NMR spectral studies and are formulated as [Ru(X)(CO) (L)(EPh3)(B)] (L = Schiff base anion; X = H or Cl; B = EPh3, py or pip; E = P or As). An octahedral structure has been tentatively proposed for the new complexes. The new complexes were tested for their catalytic activities in the oxidation of benzyl alcohol to benzaldehyde.  相似文献   

14.
The synthesis and characterisation of some new hexa-coordinated Schiff base complexes of the type [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3 or AsPh3 or py or pip; L = anion of the Schiff bases derived from 2-hydroxy-1-naphthaldehyde and aniline, 4-chloroaniline or 2-methylaniline) are reported. I.r., electronic, 1H-n.m.r, 31P-n.m.r. spectra, catalytic activity and antibacterial activity of the complexes are discussed. An octahedral structure has been tentatively proposed for all the complexes.  相似文献   

15.
Hexa-coordinated ruthenium(II) complexes of the type [Ru(CO)(PPh3)(Z)(L)] [Z = PPh3, pyridine (py) or piperidine (pip); L = anion of the Schiff base] have been prepared by reacting [RuHCl(CO)(PPh3)2(Z)] with tridentate Schiff bases derived by condensing anthranilic acid with acetylacetone, salicylaldehyde, o-vanillin and o-hydroxyacetophenone. The complexes were characterised by analytical and spectral (i.r., electronic, 1H- and 31P-n.m.r.) data, and were found to be effective catalysts for oxidising primary alcohols to aldehydes in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant. The Schiff bases and their ruthenium(II) complexes show growth inhibitory activity against pathogenic fungi Aspergillus flavus, Fusarium oxysporium and Rhizoctonia solani.  相似文献   

16.
Reactions of ruthenium(II) carbonyl complexes of the type [RuHCl(CO)(PPh3)2(B)] [B?=?PPh3, pyridine (py), piperidine (pip) or morpholine (mor)] with bidentate Schiff base ligands derived from the condensation of 2-hydroxy-1-naphthaldehyde with aniline, o-, m- or p-toluidine in a 1?:?1 mol ratio in benzene resulted in the formation of complexes formulated as [RuCl(CO)(L)(PPh3)(B)] [L?=?bidentate Schiff base anion, B?=?PPh3, py, pip, mor]. The complexes were characterized by analyses, IR, electronic and 1H NMR spectroscopy, and cyclic voltammetric studies. In all cases, the Schiff bases replace one molecule of phosphine and a hydride ion from the starting complexes, indicating that Ru–N bonds in the complexes containing heterocyclic nitrogenous bases are stronger than the Ru–P bond to PPh3. Octahedral geometry is proposed for the complexes.  相似文献   

17.
The new N,N,O ligand 2,2-bis(3,5-dimethylpyrazol-1-yl)propionic acid (2,2-Hbdmpzp) (2) and its transition metal complexes [Mn(2,2-bdmpzp)(CO)(3)] (3), [Re(2,2-bdmpzp)(CO)(3)] (4), [Cu(2,2-bdmpzp)(2)] (5), and [Ru(2,2-bdmpzp)Cl(L)(PPh(3))] [L = PPh(3) (6), N(2) (7), CO (8a/b), SO(2) (9a/b)] have been synthesized, characterized and compared to analogous complexes bearing a bis(3,5-dimethylpyrazol-1-yl)acetic acid. It was found that the additional methyl group has a remarkable influence on the stability and reactivity of transition metal complexes.  相似文献   

18.
Complexes of the type [Ru(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3, py or pip; L = dianion of the Schiff bases derived from the condensation of salicyloyl hydrazide with acetone, ethyl methyl ketone and salicylaldehyde have been synthesised by the reaction of equimolar amounts of [RuHCl(CO)(EPh3)2(B)] and Schiff bases in benzene. The resulting complexes have been characterized by analytical and spectral (i.r., electronic, n.m.r.) data. The arrangements of Ph3P groups around the Ru metal was determined from 31P-n.m.r. spectra. An octahedral structure has been assigned to all the new complexes. All the complexes exhibit catalytic activity for the oxidation of benzyl alcohol and cyclohexanol in the presence of N-methylmorpholine-N-oxide as co-oxidant.  相似文献   

19.
The reactions of [RuHCl(CO)(PPh3)2(B)] (B = PPh3, pyridine or piperidine) and 2'-hydroxychalcones led to the formation of [RuCl(CO)(PPh3)(L)(B)] (L = chalconate). The new complexes have been characterized by analytical and spectral (IR, electronic, 1H NMR and 31P NMR) data. They have been assigned an octahedral structure. The complexes have been used as catalysts for the aerial oxidation of cinnamyl alcohol. Some of the complexes have been tested in vitro for growth inhibitory activity against the bacteria E. coli, S. typhi and Pseudomonas sp. and the fungi A. fumigatus.  相似文献   

20.
The reaction of [AuCl(P-N)], in which P-N represents a heterofunctional phosphine ligand, with pentafluorothiophenol, HSC(6)F(5), gives the thiolate gold derivatives [Au(SC(6)F(5))(P-N)] (P-N = PPh(2)py (1), PPh(2)CH(2)CH(2)py (2), or PPhpy(2) (3)). Complex [Au(SC(6)F(5))(PPh(2)py)] (1) reacts with [Au(OTf)(PPh(2)py)] in a 1:1 or 1:2 molar ratio to afford the di- or trinuclear species [Au(2)(μ-SC(6)F(5))(PPh(2)py)(2)]OTf (4) and [Au(3)(μ(3)-SC(6)F(5))(PPh(2)py)(3)](OTf)(2) (5), with the thiolate acting as a doubly or triply bridging ligand. The reactivity of the mononuclear compounds [Au(SC(6)F(5))(P-N)] toward silver or copper salts in different ratios has been investigated. Thus, the treatment of [Au(SC(6)F(5))(P-N)] with Ag(OTf) or [Cu(NCMe)(4)]PF(6) in a 1:1 molar ratio gives complexes of stoichiometry [AuAg(OTf)(μ-SC(6)F(5))(P-N)] (P-N = PPh(2)py (6), PPh(2)CH(2)CH(2)py (7), or PPhpy(2) (8)) or [AuCu(μ-SC(6)F(5))(P-N)(NCMe)]PF(6) (P-N = PPh(2)py (9), PPh(2)CH(2)CH(2)py (10), or PPhpy(2) (11)). These complexes crystallize as dimers and display different coordination modes of the silver or copper center, depending on the present functionalized phosphine ligand. The treatment of [Au(SC(6)F(5))(PPh(2)py)] with silver and copper compounds in other molar ratios has been carried out. In a 2:1 ratio, the complexes [Au(2)M(μ-SC(6)F(5))(2)(μ-PPh(2)py)(2)]X (M = Ag, X = OTf (12); M = Cu, X = PF(6) (13)) are obtained. The same reaction in a 4:3 molar ratio affords the species [Au(4)M(2)(μ-SC(6)F(5))(3)(μ-PPh(2)py)(4)]X(3) (M = Ag, X = OTf (14); M = Cu, X = PF(6) (15)). The crystal structures of some of these complexes reveal different interactions among the metallic d(10) centers. The complexes display dual emission. The band at higher energy has been attributed to intraligand (IL) transitions, and the one at lower energy has been assigned to a ligand to metal (LM) charge transfer process. The latter emission is modulated by the heterometal (silver or copper).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号