首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulation and flow visualization were performed to study the dynamical behavior of vortices generated in channels with two different geometries, i.e., a periodically converging–diverging channel and serpentine channel, both having sinusoidal wavy walls. This system for pulsatile flow is used to enhance heat and mass transfer in very viscous liquids. The numerical results predict well the dynamical behavior of vortices and agree with the flow visualizations. For both channels, the vortex expands in each furrow of the channel walls during the deceleration phase and shrinks during the acceleration phase, which leads to fluid exchange between the vortex and the mainstream. The time-averaged vortex strength and wall shear stresses increase, as the frequency of fluid oscillation increases under a fixed oscillatory fraction of the flow rate. However, above a certain value of the frequency, they reversely decrease due to viscous effects. This frequency for the serpentine channel is smaller than that for the converging–diverging channel. The channel geometries are found to have an important effect of the flow characteristics.  相似文献   

2.
The present study investigates experimentally two-phase flow patterns and pressure drop of ethanol and CO2 in a converging or diverging rectangular microchannel. The two-phase flow pattern visualization is made possible using a high speed video camera. The increased superficial gas velocity due to the acceleration effect and the large pressure drop in a converging channel may result in the elongation of bubbles in slug flow, while the decreased superficial velocity owing to the deceleration effect and the possible pressure rise in the diverging channel may cause shortening of bubbles in slug flow significantly. For both types of channel, the collision and merger of two consecutive bubbles may take place and result in necking of bubbles. Two-phase flow pressure drop in the converging microchannel increases approximately linearly with the increasing liquid or gas flow rate with the frictional pressure drop being the major contributor to the channel pressure drop. In the diverging microchannel, the deceleration effect results in the pressure rise and counteracts the frictional pressure drop. Consequently, for low liquid flow rates the channel pressure drop increases only slightly with the gas flow rate while it is low and a reversed trend appears while it is high. For high liquid flow rates the effect of increasing gas flow rate on channel pressure drop is much more significant; a more significant reverse trend of the effect of gas flow rate is present in the region of high gas flow rates. The two-phase frictional multiplier in the converging or diverging microchannel is quite insensitive to the liquid flow rate and can be fitted very well within ±15% based on the Lockhart–Martinelli equation with a modified Chisholm parameter for the diverging microchannel and together with a modified coefficient for the X−2 term for the converging microchannel.  相似文献   

3.
利用磁流体五波模型对低磁雷诺数下压缩管道中磁流体流动进行数值模拟。该模型由带有电磁作用强制项的Navier-Stokes方程组与电势Poisson方程组成,数值格式分别采用严格保证熵条件的熵条件格式和中心差分格式。数值模拟对不同磁作用数下的不同几何外形管道进行数值模拟研究,结果表明在磁流体压缩管道中,由于发生器模式提取...  相似文献   

4.
Extensive experimental data on the birefringence in converging and diverging flows of a polymeric melt have been obtained. The birefringence and pressure drop measurements were carried out in working cells of planar geometry having different contraction angles and contraction ratios. For investigation of diverging or abrupt expansion flow, the direction of flow in the cells was reversed. The theoretical predictions are based upon the Leonov constitutive equation and a finite element scheme with streamwise integration.In contrast to Newtonian and second-order fluids, viscoelastic fluids at high shear rates show significant differences in pressure drop and birefringence (i.e. stresses) in converging and diverging flows. For a constant flow rate, the pressure drop is higher and the birefringence smaller in diverging flows than in converging flows. This difference increases with increasing flow rate. Further, for the same contraction ratio but different contraction angles, the birefringence maximum increases considerably with contraction angle. In addition, an increase in contraction ratio has the same effect.The viscoelastic constitutive equation of Leonov has been shown to describe all the above viscoelastic effects observed in the experiments. In general, a reasonable agreement between theory and experiment has been obtained, which shows the usefulness of the Leonov model in describing actual flows.  相似文献   

5.
Heat transfer to laminar flow in tapered passages is studied for two types of thermal boundary conditions: prescribed heat flux on both walls, and on one wall with the other wall adiabatic. In the analysis, the flow is assumed to be purely radial. Temperature distributions and Nusselt number are obtained for the heat flux qrδ. The Nusselt number depends on Reynolds number and taper angle. The fully developed Nusselt number decreases with increase in δ for converging flow and increases for diverging flow. Constant heat flux boundary conditions, δ = 0, for converging flow yield a reduction in Nusselt number when compared with the case of parallel channel flow.  相似文献   

6.
An experimental analysis about the flow patterns that appear in the channel formed between two corrugated plates with an egg carton configuration is reported. The types of flow instabilities caused by the corrugated plates are identified and described by means of flow visualization experiments, and photographic sequences illustrate the flow features present for each case. The influence on flow instabilities of Reynolds number, phase angle, convergence/divergence angle and spacing between corrugated plates is investigated. The corrugated plates are set divergent and convergent in order to investigate if recirculations are broken by chaotic advection. The improvement of heat transfer in the laminar regime has become an essential task in many applications and therefore the experiments are conducted in this regime.The corrugated plates geometry provides two main advantages over the conventional plane plates: the recirculation zones observed in the longitudinal direction and the three-dimensionality of the flow, i.e. the recirculations reduce the thermal resistances while the three-dimensionality of flow generates a better mixing and a more uniform temperature distribution.This experimental study contributes to the general knowledge on the subject being the first that addresses the analysis of convergent and divergent egg carton plates. It is expected that the results presented here will shed some light as to advantageously use these geometries in the near-future heat exchangers. (Because of the improve chaotic mixing in divergent corrugated plates, this configuration may be a good option to improve heat exchangers performance, because a better mixing is always related to the presence of core fluid near exchange surfaces, and consequently an increase in temperature gradients and heat transfer.)  相似文献   

7.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

8.
This note presents flow visualization results to show the response of wake flows behind a cylinder to the feedback suppression and excitation. The experiments were conducted in a water channel and the feedback perturbations were introduced into the wake by oscillating the cylinder transverse to the oncoming flow. The visualization photographs directly illustrated the wake flows under the feedback suppression and excitation at Reynolds numbers up to 25% above the natural onset Reynolds number for vortex shedding.  相似文献   

9.
Polymer solutions and melts can exhibit large upstream corner and lip vortices, unstable and diverging flow and an enhanced pressure drop when flowing through a geometry containing a constriction. In the present work, we use a planar microfluidic device to show that the length of the downstream constriction plays an important role in the upstream kinematics and the extra pressure drop. That is, the elastic flow phenomena observed upstream of a constriction during entry flows of polymer solutions are not exclusively a result of the stretching dynamics induced by the converging flow—the downstream relaxation events are, at least, equally important. Flow visualization experiments with semi-dilute solutions of a high molecular weight polymer showed that large stable symmetric vortices could be reduced to highly chaotic asymmetric flow, merely by increasing the length of the constriction—the Reynolds number and elasticity number were both held constant. This was accompanied by a higher extra pressure. These results support the hypothesis that elastic flow instabilities originate downstream of the constriction (at the expansion) and move progressively upstream with time and/or flowrate. These findings may also partly explain the discrepancies commonly observed between the results of entry flow experiments and numerical simulations, in which the downstream geometry is very rarely considered. Lastly, we illustrate how to minimize the occurrence of unstable flow upstream of a constriction, which is a necessary condition for closed microrheometry devices used to characterize low viscosity elastic fluids.  相似文献   

10.
Linear stability of two-dimensional steady flow in wavy-walled channels   总被引:1,自引:0,他引:1  
Linear stability of fully developed two-dimensional periodic steady flows in sinusoidal wavy-walled channels is investigated numerically. Two types of channels are considered: the geometry of wavy walls is identical and the location of the crest of the lower and upper walls coincides (symmetric channel) or the crest of the lower wall corresponds to the furrow of the upper wall (sinuous channel). It is found that the critical Reynolds number is substantially lower than that for plane channel flow and that when the non-dimensionalized wall variation amplitude is smaller than a critical value (about 0.26 for symmetric channel, 0.28 for sinuous channel), critical modes are three-dimensional stationary and for larger , two-dimensional oscillatory instabilities set in. Critical Reynolds numbers of sinuous channel flows are smaller for three-dimensional disturbances and larger for two-dimensional disturbances than those of symmetric channel flows. The disturbance velocity distribution obtained by the linear stability analysis suggests that the three-dimensional stationary instability is mainly caused by local concavity of basic flows near the reattachment point, while the critical two-dimensional mode resembles closely the Tollmien–Schlichting wave for plane Poiseuille flow.  相似文献   

11.
Micromixers are vital components in micro total analysis systems. It is desirable to develop micromixers which are capable of rapidly mixing two or more fluids in a small footprint area, while minimizing mechanical losses. A novel planar scaled-up passive micromixer is experimentally investigated in this study. The design incorporates a 7-substream uneven interdigital inlet which supplies two liquid species in a parallel arrangement and promotes diffusion along the side walls. Forty-eight staggered teardrop-shaped obstruction elements located along the channel length combined with 32 side walls protrusions increase the two-fluid interfacial area while converging the flow due to periodic reductions in cross-sectional area. The scaled-up micromixer has a mixing channel length of 110 mm with a mixing channel height and width of 2 and 5 mm, respectively. Experimental investigations are carried out at four locations along the channel length and at Reynolds numbers equal to 1, 5, 10, 25, 50, and 100, where the Reynolds number is calculated based on total two-fluid flow and the mixing channel hydraulic diameter. Flow visualization is employed to study flow patterns, while induced fluorescence (IF), using de-ionized water and low concentration Rhodamine 6G solutions, provides mixing efficiency data. Results show a change in dominant mixing mechanism from mass diffusion to mass advection, with a critical Reynolds number of 25. At high Reynolds numbers, the formation of additional lamellae is observed, as is the formation of Dean vortices in the vicinity of the teardrop obstructions. Of the tested cases, the highest outlet mixing efficiency, 68.5%, is achieved at a Reynolds number of 1, where mass diffusion dominates. At low Reynolds numbers, superior mixing efficiency is due primarily to the implementation of the uneven interdigital inlet. A comparable mixing length is proposed to allow for reasonable comparison with published studies.  相似文献   

12.
The characteristics of flow development and heat transfer in converging plane-walled channels are studied by the finite difference method. The velocity and temperature profiles in both angular and radial directions, the average Nusselt number and the pressure drop are calculated for three different taper angles. The results show that the transport process is governed by three parameters: the inlet Reynolds number, the Péclet number and the taper angle. The increase of the taper angle yields an increase of the Nusselt number and a decrease of the pressure drop.  相似文献   

13.
Based on an improvement of the Karman-Pohlhausen's method, using nonlinear polynomial fitting and numerical integral, the axial distributions of pressure and its gradient in an axisymmetric rigid vessel with stenosis were obtained, and the distributions related to Reynolds number and the geometry of stenotic vessel were discussed. It shows that with the increasing of stenotic degree or Reynolds number, the fluctuation of pressure and its gradient in stenotic area is intense rapidly, and negative pressure occurs subsequently in the diverging part of stenotic area. Especially when the axial range of stenosis extends, the flow of blood in the diverging part will be more obviously changed. In higher Reynolds number or heavy stenosis, theoretical calculation is mainly in accordance with nast experiments.  相似文献   

14.
In micro channels, slug flow becomes one of the main flow regimes due to strong surface tension. In micro channel slug flow, elongated bubble flows with the thin liquid film confined between the bubble and the channel wall. Liquid film thickness is an important parameter in many applications, e.g., micro heat exchanger, micro reactor, coating process etc. In the present study, liquid film thickness in micro square channels is measured locally and instantaneously with the confocal method. Square channels with hydraulic diameter of Dh = 0.3, 0.5 and 1.0 mm are used. In order to investigate the effect of inertial force on the liquid film thickness, three working fluids, ethanol, water and FC-40 are used. At small capillary numbers, liquid film at the channel center becomes very thin and the bubble interface is not axisymmetric. However, as capillary number increases, bubble interface becomes axisymmetric. Transition from non-axisymmetric to axisymmetric flow pattern starts from lower capillary number as Reynolds number increases. An empirical correlation for predicting axisymmetric bubble radius based on capillary number and Weber number is proposed from the present experimental data.  相似文献   

15.
The question of non-locality is considered for a model supersonic flow at high Reynolds number in a channel formed between two parallel plates of different length, using the channel length as a control parameter. Examples are given of time-periodic stable and unstable flows forced by a disturbance positioned in the middle of the channel. It is shown that in certain parameter ranges the flow in a channel of ever increasing length is not approximated by the solutions obtained for infinitely long channels. This is interpreted in terms of a feedback interaction between the flow near the channel ends and the disturbance source. Feedback is shown to result from a slow upstream decay of disturbances coupled with a relatively fast downstream growth of instability waves. For a free (non-forced) flow, the feedback is found to lead to a form of global or resonant instability. Examples of growth rate calculations for the feedback modes are given.  相似文献   

16.
Finite element results are presented for the extrudate swell of Newtonian fluids from converging and diverging annular dies. Numerical calculations for a variety of diameter ratios and taper angles show the dependance of diameter and thickness swell on the angle. For diverging dies a thickness contraction occurs for angles greater than 30 degrees, while the diameter swell increases rapidly. For converging dies the design is limited to angles that do not allow contact of the inner free surfaces. The present results show that the diameter swell is highest for the diverging, followed by the straight and then the converging dies.  相似文献   

17.
The problem of a two-dimensional steady flow of a second-grade fluid in a converging porous channel is considered. It is assumed that the fluid is injected into the channel through one wall and sucked from the channel through the other wall at the same velocity, which is inversely proportional to the distance along the wall from the channel origin. The equations governing the flow are reduced to ordinary differential equations. The boundary-value problem described by the latter equations is solved by the homotopy perturbation method. The effects of the Reynolds and crossflow Reynolds number on the flow characteristics are examined.  相似文献   

18.
The direct numerical simulation of fully developed turbulent channel flow with a sinusoidal riblet surface has been carried out at the friction Reynolds number of 110. Lateral spacing of adjacent walls in a sinusoidal riblet is varied sinusoidally in the streamwise direction. The average lateral spacing of a sinusoidal riblet is larger than the diameter of a quasi-streamwise vortex and its wetted area is smaller than that of ordinary straight-type riblets. We investigate the effect of sinusoidal riblet design parameters on the drag reduction rate and flow statistics in this paper. The parametric study shows that the maximum total drag reduction rate is approximately 9.8% at a friction Reynolds number of 110. The riblet induces downward and upward flows in the expanded and contracted regions, respectively, which contribute to periodic Reynolds shear stress. However, the random Reynolds shear stress decreases drastically as compared with the flat surface case, resulting in the reduction of total drag owing to the sinusoidal riblet. We also performed vortex tracking to discuss the motion of the vortical structure traveling over the sinusoidal riblet surface. Vortex tracking and probability analysis for the core of the vortical structure show that the vortical structure is attenuated owing to the sinusoidal riblet and follows the characteristic flow. These results show that the high skin-friction region on the channel wall is localized at the expanded region of the riblet walls. In consequence, the wetted area of the riblet decreases, resulting in the drag-reduction effect.  相似文献   

19.
An analysis of the flow of a second‐order fluid is presented. Reference values for some variables are defined, and with these a non‐dimensional formulation of the governing equations. From this formulation, three dimensionless numbers appear; one is the Reynolds number, and two numbers that are called the first‐ and second‐dimensionless normal stress (NSD) coefficients. The equations of motion are solved by a finite element method using a commercially available program (Fidap), and the steady state converged solution was used to measure the die swell. The factors that influence die swell and that are studied in this work include: the die geometry for circular cross sectional dies, including tubular, converging, diverging, half‐converging/half‐tubular shapes; fluid characteristics such as Reynolds number and first‐ and second‐DNS coefficients (both positive and negative values); and flow rates, as determined by the maximum velocity in a parabolic velocity profile at the entrance to the die. The results suggest that shear and deformation histories of the fluid directly influence not only swell characteristics, but also convergence characteristics of the numerical simulation. © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
Correlation of swirl number for a radial-type swirl generator   总被引:1,自引:0,他引:1  
An experimental investigation was undertaken to derive a new correlation for the swirl number of a radial-type swirl generator under various Reynolds numbers and various vane angle conditions. A radial-type swirl generator with 16 rotary guide vanes was used to generate an annular swirling jet flow. The Reynolds numbers ranged from 60 to 6000, and the vane angles from 0° to 56°. Quantitative measurements for the velocities were made by using an optical method of laser-Doppler anemometry (LDA). Three-component velocity profiles of axial, radial, and azimuthal components at the swirling jet exit were measured for various flow conditions. A flow visualization method using smoke-wire and still photography was also applied to observe the flow patterns of the recirculation region behind the circular bluff body. Under low Reynolds number conditions, the swirl strength was found to be strongly dependent on the Reynolds number as well as on the guide vane angle. Based on the experimental results, a modified swirl number S is derived to characterize the swirling flow, which is useful for the design of a swirl generator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号