首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied Mathematics Letters》2003,16(7):1031-1037
Two quick methods of solution of a singular integral equation of the first kind defined over disjoint multiple intervals involving a logarithmic singularity are explained.  相似文献   

2.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises when solving the Neumann boundary value problem for the Laplace equation with the use of the representation of the solution in the form of a double layer potential. We study the case in which an exterior or interior boundary value problem is solved in a domain whose boundary is a smooth closed surface and the integral equation is written out on that surface. For the numerical solution of the integral equation, the surface is approximated by spatial polygons whose vertices lie on the surface. We construct a numerical scheme for solving the integral equation on the basis of such an approximation to the surface with the use of quadrature formulas of the type of the method of discrete singularities with regularization. We prove that the numerical solutions converge to the exact solution of the hypersingular integral equation uniformly on the grid.  相似文献   

3.
We consider a linear integral equation with a hypersingular integral treated in the sense of the Hadamard finite value. This equation arises in the solution of the Neumann boundary value problem for the Laplace equation with a representation of a solution in the form of a double-layer potential. We consider the case in which the interior or exterior boundary value problem is solved in a domain; whose boundary is a smooth closed surface, and an integral equation is written out on that surface. For the integral operator in that equation, we suggest quadrature formulas like the method of vortical frames with a regularization, which provides its approximation on the entire surface for the use of a nonstructured partition. We construct a numerical scheme for the integral equation on the basis of suggested quadrature formulas, prove an estimate for the norm of the inverse matrix of the related system of linear equations and the uniform convergence of numerical solutions to the exact solution of the hypersingular integral equation on the grid.  相似文献   

4.
The Neumann problem for the Helmholtz equation is considered. The double-layer potential is used to reduce the problem to a hypersingular integral equation. The properties of the hypersingular operator in a neighborhood lead to a method for approximate solution of the hypersingular equation with an arbitrary contour. Some numerical results are reported.Translated from Matematicheskoe Modelirovanie i Reshenie Obratnykh Zadach. Matematicheskoi Fiziki, pp. 130–136, 1993.  相似文献   

5.
We consider a linear integral equation, which arises when solving the Neumann boundary value problem for the Laplace equation with the representation of the solution in the form of a double layer potential, with a hypersingular integral treated in the sense of Hadamard finite value. We consider the case in which the exterior or interior problem is solved in a domain whose boundary is a closed smooth surface and the integral equation is written over that surface. A numerical scheme for solving the integral equation is constructed with the use of quadrature formulas of the type of the method of discrete singularities with a regularization for the use of an irregular grid. We prove the convergence, uniform over the grid points, of the numerical solutions to the exact solution of the hypersingular equation and, in addition, the uniform convergence of the values of the approximate finite-difference derivative operator on the numerical solution to the values on the projection of the exact solution onto the subspace of grid functions with nodes at the collocation points.  相似文献   

6.
We study the solvability of a complete two-dimensional linear hypersingular integral equation that contains a hypersingular integral operator in which the integral is understood in the sense of Hadamard finite value as well as an integral operator in which the integral is understood in the sense of principal value, an integral operator with a weakly singular kernel, and an integral-free term. We consider smooth solutions in the class of functions that have Hölder continuous derivatives outside a neighborhood of the boundary. We prove the Fredholm alternative and estimate the norm of the solution in a special metric.  相似文献   

7.
A simple method based on polynomial approximation of a function is employed to obtain approximate solution of a class of singular integral equations of the second kind. For a hypersingular integral equation of the second kind, this method avoids the complex function-theoretic method and produces the known exact solution to Prandtl's integral equation as a special case. For a particular singular integro-differential equation of the second kind, this also produces an approximate solution which compares favourably with numerical results obtained by various Galerkin methods. The convergence of the method for both the equations is also established.  相似文献   

8.
The aim of this paper is to investigate the numerical solution of the hypersingular integral equation reduced by the harmonic equation. First, we transform the hypersingular integral equation into 2π-periodic hypersingular integral equation with the map x=cot(θ/2). Second, we initiate the study of the multiscale Galerkin method for the 2π-periodic hypersingular integral equation. The trigonometric wavelets are used as trial functions. Consequently, the 2j+1 × 2j+1 stiffness matrix Kj can be partitioned j×j block matrices. Furthermore, these block matrices are zeros except main diagonal block matrices. These main diagonal block matrices are symmetrical and circulant matrices, and hence the solution of the associated linear algebraic system can be solved with the fast Fourier transform and the inverse fast Fourier transform instead of the inverse matrix. Finally, we provide several numerical examples to demonstrate our method has good accuracy even though the exact solutions are multi-peak and almost singular.  相似文献   

9.
This paper is concerned with obtaining approximate numerical solutions of some classes of integral equations by using Bernstein polynomials as basis. The integral equations considered are Fredholm integral equations of second kind, a simple hypersingular integral equation and a hypersingular integral equation of second kind. The method is explained with illustrative examples. Also, the convergence of the method is established rigorously for each class of integral equations considered here.  相似文献   

10.
We study the numerical solution of a linear hypersingular integral equation arising when solving the Neumann boundary value problem for the Laplace equation by the boundary integral equation method with the solution represented in the form of a double layer potential. The integral in this equation is understood in the sense of Hadamard finite value. We construct quadrature formulas for the integral occurring in this equation based on a triangulation of the surface and an application of the linear approximation to the unknown function on each of the triangles approximating the surface. We prove the uniform convergence of the quadrature formulas at the interpolation nodes as the triangulation size tends to zero. A numerical solution scheme for this integral equation based on the suggested quadrature formulas and the collocation method is constructed. Under additional assumptions about the shape of the surface, we prove a uniform estimate for the error in the numerical solution at the interpolation nodes.  相似文献   

11.
A direct method of solution is presented for singular integral equations of the first kind, involving the combination of a logarithmic and a Cauchy type singularity. Two typical cases are considered, in one of which the range of integration is a single finite interval and, in the other, the range of integration is a union of disjoint finite intervals. More such general equations associated with a finite number (greater than two) of finite, disjoint, intervals can also be handled by the technique employed here.  相似文献   

12.
A quick method of solution for multiple integral equations which are defined over a partition consisting of three intervals of the positive axis and whose kernel is the combination of trigonometric functions has been explained. The solution procedure can be extended to deal with similar integral equations defined over any finite partition of the positive axis. To represent the solution uniquely, certain solvability criteria are obtained in terms of the forcing functions involved. Limiting cases of dual integral equations over two disjoint intervals are discussed.  相似文献   

13.
We study the solvability of a complete two-dimensional linear integral equation with a hypersingular integral understood in the sense of the Hadamard principal value. We justify the convergence of a quadrature-type numerical method for the case in which the equation in question is uniquely solvable. We present an application of the results to the numerical solution of the Neumann boundary value problem on a plane screen for the Helmholtz equation by the surface potential method.  相似文献   

14.
A numerical scheme has been constructed for solving a linear hypersingular integral equation on a segment with the integral treated in the sense of the Hadamard principle value by the method of piecewise linear approximations on an arbitrary nonuniform grid, with the hypersingular integral being regularized by approximating the unknown function with a constant in a small neighborhood of the singular point. The radius of the neighborhood can be chosen independently of the grid pitch, the latter understood as the maximum distance between the nodes. The uniform convergence of the obtained numerical solutions to the exact solution is proved as the grid pitch and the radius of the neighborhood in which the regularization is performed simultaneously tend to zero.  相似文献   

15.
Different iterative schemes based on collocation methods have been well studied and widely applied to the numerical solution of nonlinear hypersingular integral equations (Capobianco et al. 2005). In this paper we apply Newton’s method and its modified version to solve the equations obtained by applying a collocation method to a nonlinear hypersingular integral equation of Prandtl’s type. The corresponding convergence results are derived in suitable Sobolev spaces. Some numerical tests are also presented to validate the theoretical results.  相似文献   

16.
This paper presents an integral formulation for Helmholtz problems with mixed boundary conditions. Unlike most integral equation techniques for mixed boundary value problems, the proposed method uses a global boundary charge density. As a result, Calderón identities can be utilized to avoid the use of hypersingular integral operators. Numerical results illustrate the performance of the proposed solution technique.  相似文献   

17.
《Applied Mathematics Letters》2006,19(11):1286-1290
A simple approximate method for solving a general hypersingular integral equation of the first kind with its kernel consisting of a hypersingular part and a regular part is developed here. The method is illustrated by considering some simple examples.  相似文献   

18.
In this paper, we present an alternative method to investigate scattering of water waves by a submerged thin vertical elastic plate in the context of linear theory. The plate is submerged either in deep water or in the water of uniform finite depth. Using the condition on the plate, together with the end conditions, the derivative of the velocity potential in the direction of normal to the plate is expressed in terms of a Green’s function. This expression is compared with that obtained by employing Green’s integral theorem to the scattered velocity potential and the Green’s function for the fluid region. This produces a hypersingular integral equation of the first kind in the difference in potential across the plate. The reflection coefficients are computed using the solution of the hypersingular integral equation. We find good agreement when the results for these quantities are compared with those for a vertical elastic plate and submerged and partially immersed rigid plates. New results for the hydrodynamic force on the plate, the shear stress and the shear strain of the vertical elastic plate are also evaluated and represented graphically.  相似文献   

19.
Discretisation of the integral equations of acoustic scattering yields a system of linear equations with full coefficient matrices. In recent years a number of fast algorithms for the solution of this system have been proposed. In this paper we present a complete analysis for a fast multipole method for the Helmholtz equation. A one-level diagonal form of the multipole method is applied to a hypersingular integral equation arising from 2d scattering theory. The error of the approximation is analysed and the results used to establish the complexity of the method.  相似文献   

20.
A hypersingular boundary integral equation of the first kind on an open surface piece Γ is solved approximately using the Galerkin method. As boundary elements on rectangles we use continuous, piecewise bilinear functions which vanish on the boundary of Γ. We show how to compensate for the effect of the edge and corner singularities of the true solution of the integral equation by using an appropriately graded mesh and obtain the same convergence rate as for the case of a smooth solution. We also derive asymptotic error estimates in lower-order Sobolev norms via the Aubin–Nitsche trick. Numerical experiments for the Galerkin method with piecewise linear functions on triangles demonstrate the effect of graded meshes and show experimental rates of convergence which underline the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号