首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper first summarizes the forced response problem in turbomachinery and reviews various numerical methods for the simulation of unsteady flows. A particular technique, based on the linearisation of the unsteady Favre-averaged Navier-Stokes equations on three-dimensional mixed-element grids of tetrahedra, hexahedra and wedges, is described in some detail. The methodology was applied to a NGV/rotor interaction benchmark case for which detailed steady and unsteady flow measurements are available. The steady-state flow, calculated using a non-linear viscous representation, was described in detail with emphasis on features such as separation, horseshoe and passage vortices, tip leakage and shock structure since these are likely to influence the unsteady flow. The sources of unsteadiness on the rotor passage were evaluated from the steady-state solution at the NGV outlet. The disturbances were split into vortical, entropic and potential waves, the Fourier components of which were considered separately. The summation of the vortical and entropic waves was used as a rotor inlet boundary condition in order to assess the wake/rotor unsteady interaction. Similarly, potential waves were used to study the potential/rotor interaction. The results obtained from these two types of unsteady interactions were superimposed and compared with experimental data. Good qualitative and, in most cases, quantitative agreement was obtained, a finding which suggests that the unsteady flowfield generated by the relative blade motion can be considered to be a quasi-linear phenomenon for the particular HP turbine studied. Finally, the mechanisms of wake/rotor and potential/rotor interactions were studied in some detail and it was concluded that the former was strong in the crown of the blade while the latter was dominant in the leading edge region.  相似文献   

2.
A two-frame PIV (particle image velocimetry) technique was used to investigate the flow characteristics of a complicated propeller wake influenced by a hull wake. As the propeller is significantly affected by the hull wake of a marine vessel, measurements of the propeller wake under the hull wake are certainly needed for more reliable validation of numerical predictions. Velocity field measurements were conducted in a cavitation tunnel with a simulated hull wake. Generally, the hull wake generated by the hull of a marine ship may cause different loading distributions on the propeller blade in both the upper and the lower propeller planes. The unstable propeller wake caused by the ship’s hull was interpreted in terms of turbulent kinetic energy (T KE) to obtain useful information for flow modeling. The unstable or unsteady phenomenon in the upper propeller wake was identified by using the proper orthogonal decomposition (POD) method to characterize the coherent flow structure with turbulent kinetic energy. Strong unsteadiness appeared in the second and higher modes, largely affecting the downstream flow characteristics. The first eigenmode can be used to appropriately identify the tip vortex positions even in the unstable downstream region, which are helpful for establishing reliable wake modeling.  相似文献   

3.
Application of SPIV in turbomachinery   总被引:5,自引:0,他引:5  
Stereoscopic particle-image velocimetry (SPIV) has been successfully used in a low-speed large-scale axial compressor. A configuration in which two CCD cameras were placed at different sides of the light sheet was employed. It is demonstrated that the results measured with such a configuration are significant for the study of unsteady flow structures of the streamwise vortices and secondary flows in the test rotor, and that such a configuration is easy to use in multi-stage turbomachinery. The instantaneous snapshots, ensemble-averaged results and turbulence statistics in the rotor passage were obtained at both the design and near-stall conditions. The representative flow structures, such as the tip leakage vortex, the corner vortex and the inlet guide vane wake, can be depicted clearly. Moreover, according to experimental and theoretical analyses, some guidance is provided for the application of SPIV in turbomachinery.  相似文献   

4.
This paper describes the formulation of an advanced numerical model for the simulation of high- and low-engine-order forced response for turbomachinery applications. The various forced response mechanisms are explained in some detail and a specification for an accurate prediction system is discussed with emphasis on both fluid and structural modelling aspects. The Favre-averaged Navier–Stokes equations are used to represent the unsteady flow in a nonlinear time-accurate fashion. Features such as turbulence modelling, boundary conditions, meshing strategies and numerical treatments are discussed in detail. The structural model is based on a linear modal model, though local nonlinearities due friction dampers can be accommodated using an iterative scheme. The fluid mesh is moved at each-time step according to the structural motion, so that changes in blade aerodynamic damping and flow unsteadiness can be accommodated. It is concluded that the model can be used for large simulations involving multi-bladerow whole-annulus calculations.  相似文献   

5.
Numerical 3D simulations of turbulent, stratified two-phase shear flow with a surfactant laden interface were used to test and develop a phenomenological interfacial roughness scale model where the energy required to deform the interface (buoyancy, interfacial tension, and viscous work) is proportional to the turbulent kinetic energy adjacent to the interface.The turbulence was forced in the upper and lower liquids in the simulations, to emulate the interfacial dynamics without requiring (prohibitively) large simulation domains and Reynolds numbers. The addition of surfactant lead to an increased roughness scale (for the same turbulent kinetic energy) due to the introduction of interfacial dilatational elasticity that suppressed horizontal motion parallel to the interface, and enhanced the vertical motion.The phenomenological roughness scale model was not fully developed for dilatational elasticity in this work, but we proposed a source term that represents surfactant induced pressure fluctuations near the interface. This source term should be developed further to account for the relation between surfactant density fluctuations and turbulence adjacent to the interface. We foresee that the roughness scale model can be used as a basis for more general interfacial closure relations in Reynolds averaged turbulence models, where also mobile surfactant is accounted for.  相似文献   

6.
We investigate the onset and development of vortical flow disturbances introduced into the wake of a horizontally fixed flat-plate by means of the controlled motion of a trailing edge flap. The vibrating mechanics of the flap allows for the introduction of both impulsive and harmonic weak amplitude velocity disturbances which are propagated downstream into the wake flow of the flat-plate. Quantitative experimental and numerical predictions of both steady and unsteady wake flow velocity resulting from different flapping frequencies are made at low Reynolds numbers (Re < 104). Frequency response tests of the wake confirmed the existence of two dominant frequencies where the wake flow organises with a particular arrangement of downstream moving vortex structures. Numerical predictions of steady (unforced) and forced wake velocity profiles and kinetic energy profiles are in good agreement with the experimental results. In order to understand practical implications of the dominant vortex structures in scalar transport, we have extended the numerical part of the study solving for the concentration equation of a passive scalar being injected in particular regions of the physical domain. A spatial correlation between the trajectory of vortex structures and the scalar concentration downstream the wake is observed. Moreover, the onset of tip vortex structures produced during the forcing cycle seems to be responsible of a local increase of scalar concentration near the span wise flap ends.  相似文献   

7.
Tomographic-PIV was used to measure the boundary layer transition forced by a zigzag trip. The resulting instantaneous three-dimensional velocity distributions are used to quantitatively visualize the flow structures. They reveal undulating spanwise vortices directly behind the trip, which break up into individual arches and then develop into the hairpin-like structures typical of wall-bounded turbulence. Compared to the instantaneous flow structure, the structure of the average velocity field is very different showing streamwise vortices. Such streamwise vortices are often associated with the low-speed streaks occurring in bypass transition flows, but in this case clearly are an artifact of the averaging. Rather, the present streaks in the separated flow region directly behind the trip are resulting from the waviness in the spanwise vortices as introduced by the zigzag trip. Furthermore, these streaks and the separated flow region are observed to be related to a large-scale, spanwise uniform unsteadiness in the flow that contributes significantly to the velocity fluctuations over large downstream distances (up to at least the edge of the present measurement domain).  相似文献   

8.
A numerical study based on the Eulerian–Lagrangian formulation is performed for dispersed phase motion in a turbulent flow. The effect of spatial filtering, commonly employed in large-eddy simulations, and the role of the subgrid scale turbulence on the statistics of heavy particles, including preferential concentration, are studied through a priori analysis of DNS of particle-laden forced isotropic turbulence. In simulations where the subgrid scale kinetic energy attains 30–35% of the total we observe the impact of residual fluid motions on particles of a smaller inertia. It is shown that neglecting the influence of subgrid scale fluctuations has a significant effect on the preferential concentration of those particles. A stochastic Langevin model is proposed to reconstruct the residual (or subgrid scale) fluid velocity along particle trajectories. The computation results for a selection of particle inertia parameters are performed to appraise the model through comparisons of particle turbulent kinetic energy and the statistics of preferential concentrations.  相似文献   

9.
Planar velocity data of the unsteady separated flow in the turbulent wake of a circular cylinder obtained by particle image velocimetry (PIV) are analyzed in order to visualize the large-scale coherent structures associated with alternating vortex shedding at a Reynolds number of 2,150. Two different cases are examined: unforced vortex shedding in the natural wake and vortex lock-on incited by forced perturbations superimposed in the inflow velocity. Proper orthogonal decomposition (POD) is employed to reconstruct the low-order wake dynamics from randomly sampled snapshots of the velocity field. The reconstructed flow is subsequently used to determine the evolution of the finite-time Lyapunov exponent (FTLE) fields which identify the Lagrangian coherent structures. The results demonstrate that the combination of methods employed offers a powerful visualization tool to uncover large-scale coherent structures and to exemplify vortex dynamics in natural and forced bluff-body wakes.  相似文献   

10.
The main source of flow unsteadiness in turbomachinery is the aerodynamical interaction of the rotor and stator blade rows. The blades and vanes, moving relatively to each other, interact because of the viscous wakes and the potential effects of the blades. In addition, the wakes and potential effects superimpose with other flow patterns, for instance the tip clearance vortices and other secondary flow phenomena. Furthermore in transonic compressors the interaction of wakes and shocks plays an important role. As a result, the real flow field is highly periodically unsteady and very complex, especially in multistage turbomachinery. Although this fact has received increasing attention within recent years, blade row interactions effects are not yet typically addressed in current design systems of turbomachinery. Actually, there is a requirement of the ability of modern design methods to predict unsteady flow features. With increasing aerodynamic loading of the blades and higher Mach numbers the consideration of rotor-stator-interactions gains in importance. It is therefore one of the challenges of the present and future design of compressors and turbines to include beneficial unsteady effects to improve the engine parameters. This requires a detailed physical understanding of the unsteady flow field and the resulting effects on the performance and flow stability. In 2000 the joint research program “Periodical Unsteady Flow in Turbomachinery” was initiated. Partners of this project are five research groups from four german universities: Technische Universität Berlin (Prof. Hourmouziadis), Universität der Bundeswehr München (Prof. Fottner, Prof. Pfitzner), Universität Karlsruhe: Institut für Thermische Strömungsmaschinen (Prof. Wittig, Dr. Dullenkopf), Institut für Hydromechanik (Prof. Rodi), Technische Universität Dresden (Prof. Vogeler), and a research group from the: German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt), (Prof. Weyer, Prof. Mönig). This 5-year program was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft) and coordinated by Professor Hourmouziadis (Technische Universität Berlin). The aim of this joint project is to contribute to an improved physical understanding of the periodical unsteady flow phenomena and to provide more reliable prediction methods of these complex flow conditions in turbomachinery. Selected aspects of flow unsteadiness in turbomachines were investigated with complementing experimental and numerical investigations. Different flow conditions of different complexity were investigated in detail. After a 3-year period of the project, first results of the research group are published in a special issue of the Journal of Flow, Turbulence and Combustion (Flow Turbulence Combust 69, 2002). After the end of the joint project, in the present paper selected results of each research group, which addresses different aspects of periodical unsteady flow in turbomachinery, are discussed. However, it is not the intention of the present paper to give a general survey on this field of research. The following topics are selected to provide insight into the work of the joint research group: (1) Experimental Investigation of Rotor-Stator-Interactions in an Axial Compressor, (2) Influence Of Periodically Unsteady Flow On The Boundary Layer Development Of A Highly Loaded Linear Turbine- And Compressor Cascade, (3) Flow Conditions on a Flat Plate under Oscillating Inlet Conditions, (4) Simultaneous Measurements of Flow and Heat Transfer in a Periodically Unsteady Flow, (5) Turbulence- and Transition Modelling for Unsteady RANS simulations, and (6) Direct Numerical Simulations of Transitional Flow in Turbine-Related Geometries.  相似文献   

11.
The losses in hydrodynamic cascades caused by periodic flow unsteadiness are theoretically estimated on the assumption that the losses are due to energy expenditure to the formation of unsteady trailing vortices shed from the profiles of the cascades. The trailing vortex intensity is determined within the framework of the inviscid fluid model, by solving the corresponding problems in the linear formulation. The work done on the trailing vortex formation is determined by the increment of the kinetic energy of the flow induced by the corresponding vortices. Examples of calculations are presented for the case of periodic unsteadiness of the flow due to the hydrodynamic interaction of the cascades. The calculated results are compared with the experimental data.  相似文献   

12.
The fundamental nature of the non-linear flow-thermodynamics interactions in a compressible turbulent flow with imposed temperature fluctuations is investigated. Direct numerical simulations (DNS) of decaying anisotropic compressible turbulence (turbulent Mach number 0.06–0.6) with imposed temperature fluctuations are performed to examine: (i) interactions between solenoidal and dilatational kinetic energy; (ii) partition between dilatational kinetic energy and thermodynamic potential energy; and (iii) redistribution of solenoidal and dilatational kinetic energy among the various Reynolds stress components. It is found that solenoidal kinetic energy levels and return-to-isotropy are weakly dependent on Mach number but independent of imposed temperature fluctuations in the parameter range studied. The dilatational kinetic energy generated is proportional to the square of the pressure fluctuations associated with the initial solenoidal and temperature fluctuations and thus a strong function of Mach number and heat release intensity. The energy exchange between dilatational kinetic and potential energy is driven by a strong proclivity toward equipartition. Consequently, the dynamics of pressure-dilatation ( ${\overline{pd}}$ ), which is the mechanism of this energy exchange between dilatational and potential energies, is dictated entirely by the requirement to impose energy equipartition. Based on the results, we provide a physical picture of the solenoidal–dilatational–potential energy interactions and the action of pressure-dilatation. The identification of the fundamental precepts underlying the various interactions is of great utility for turbulence closure model development.  相似文献   

13.
Transformation of flow turbulence structure with cavitation occurrence, determination of the flow conditions favorable for nucleation of cavitation bubbles, influence of the statistical structure of turbulence on this process and the inverse effect of cavitation on the flow dynamics are challenging problems in modern fluid mechanics. The paper reports on the results of statistical processing of the velocity fields measured by a PIV technique in cavitating flow over a 2D symmetric hydrofoil for four flow conditions, starting from a cavitation-free regime and finishing by unsteady cloud cavitation. We analyze basic information on the statistical structure of velocity fluctuations in the form of histograms and Q-Q diagrams along with profiles of the mean velocity and turbulent kinetic energy. The research reveals that the flow turbulence pattern and distributions of turbulent fluctuations change significantly with the cavitation development. Under unsteady cloud cavitation conditions, the probability density function of the fluctuating velocity has a two-mode distribution, which indicates switching of two alternating flow conditions in a region above the hydrofoil aft part due to periodic passing of cavitation clouds. Behaviors of the mean and most probable velocities unexpectedly appear to be different with a monotonous increase of the incoming flow velocity. This finding must be caused by modification of the skewness coefficient of the fluctuating velocity.  相似文献   

14.
The results of direct numerical simulation of turbulent flows of non-Newtonian pseudoplastic fluids in a straight pipe are presented. The data on the distributions of the turbulent stress tensor components and the shear stress and turbulent kinetic energy balances are obtained for steady turbulent flows at the Reynolds numbers of 104 and 2×104. As distinct from Newtonian fluid flows, the viscous shear stresses turn out to be significant even far from the wall. In power-law fluid flows the mechanism of the energy transport from axial to transverse component fluctuations is suppressed. It is shown that with decrease in the fluid index the turbulent transfer of the momentum and the velocity fluctuations between the wall layer and the flow core reduces, while the turbulent energy flux toward the wall increases. The earlier-proposed models for the average viscosity and the non-Newtonian one-point correlations are in good agreement with the data of direct numerical simulation.  相似文献   

15.
离心叶轮机械内部流动的研究进展   总被引:16,自引:1,他引:15  
刘瑞韬  徐忠 《力学进展》2003,33(4):518-532
随着测量技术及数值算法的不断进步,叶轮机械内部流动研究有了很多新的进展.本文就半个世纪以来离心叶轮机械内部流动的实验及数值模拟研究进行了评述,根据作者掌握的文献,着重在以下几方面展开综述:叶轮内部流动、叶顶间隙泄漏流动、扩压器内部流动及叶轮与扩压器相互作用的非稳态流动等等.文中分别阐述了国内外学者在上述流动研究方面的主要成果,指出了这些研究的特点及其不足,分析了我国在这些领域与国际水平的差距,并结合作者自己的研究工作对离心叶轮机械内流研究提出了建议.   相似文献   

16.
The influence of the A-pillar vortex on the wall flow of the side window of a car is investigated experimentally using a 30° dihedron model. The measurement of the unsteady pressure at the wall provides a map of the pressure fluctuation intensity, and a spectral analysis is performed to track the dominant frequencies of the wall pressure fluctuations. The wall flow generated by the vortex structure that develops parallel to the side-wall is characterised by means of particle image velocimetry (PIV). Its structure is analysed and compared to cross-sections of the A-pillar vortex in order to identify the different separation and reattachment lines. A comparison of the field of turbulent kinetic energy obtained by PIV with the map of the pressure fluctuations shows a correlation between the structure of the A-pillar vortex and the pressure fluctuations. It is found that the dominant wall pressure fluctuations are located at the secondary separation line, whereas the primary reattachment line does not show any significant pressure variations, that the A-pillar vortex will not naturally break down and that discrete vortices may be associated with the pressure fluctuations.  相似文献   

17.
一种高效的叶轮机叶片气动阻尼计算方法   总被引:2,自引:0,他引:2  
运用叠加原理, 发展了一种可以运用于小振幅运动的叶轮机叶片非定常气动力降阶模型, 并将该模型与传统的能量法相结合, 提出了一种叶轮机叶片气动阻尼的高效求解方法. 运用该方法求解叶轮机叶片的气动阻尼系数, 对某个频率、某个模态只需要进行一次非定常计算, 就可以求出所有叶间振动相角下的气动阻尼系数, 提高了气动阻尼的求解效率. 在STCF4和NASA Rotor67两个算例上运用非定常雷诺平均N-S(RANS)方程和提出的降阶模型进行了对比计算.算例表明, 在小振幅下该方法的计算结果与RANS方程计算得到的气动阻尼系数能很好地吻合, 而计算效率相比多通道非定常RANS方程计算提升了近一个数量级, 并且该方法还可以运用于有失谐情况的颤振分析, 在工程上有较高的应用价值.   相似文献   

18.
A technique is described for the measurement of all components of mean velocity and Reynolds stresses, in a complex turbulent flow where achieving coincidence data acquisition is difficult. The method is based on data recorded using four orientations of the laser probe. It is shown that the measurement errors are not the same for all the components of the Reynolds tensor, but they are sufficiently small to give a good accuracy. An application to a turbomachinery flow is given to illustrate the method.  相似文献   

19.
In transonic flow conditions, the shock wave/turbulent boundary layer interaction and flow separations on wing upper surface induce flow instabilities, ‘buffet’, and then the buffeting (structure vibrations). This phenomenon can greatly influence the aerodynamic performance. These flow excitations are self‐sustained and lead to a surface effort due to pressure fluctuations. They can produce enough energy to excite the structure. The objective of the present work is to predict this unsteady phenomenon correctly by using unsteady Navier–Stokes‐averaged equations with a time‐dependent turbulence model based on the suitable (kε) turbulent eddy viscosity model. The model used is based on the turbulent viscosity concept where the turbulent viscosity coefficient () is related to local deformation and rotation rates. To validate this model, flow over a flat plate at Mach number of 0.6 is first computed, then the flow around a NACA0012 airfoil. The comparison with the analytical and experimental results shows a good agreement. The ONERA OAT15A transonic airfoil was chosen to describe buffeting phenomena. Numerical simulations are done by using a Navier–Stokes SUPG (streamline upwind Petrov–Galerkin) finite‐element solver. Computational results show the ability of the present model to predict physical phenomena of the flow oscillations. The unsteady shock wave/boundary layer interaction is described. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
可压缩各向同性衰减湍流直接数值模拟研究   总被引:5,自引:3,他引:2  
李虎  张树海 《力学学报》2012,(4):673-686
采用五阶有限差分WENO格式直接模拟了高初始湍流Mach数的可压缩均匀各向同性湍流,主要分析了湍流的统计特性 和压缩性的影响,包括能谱特征、激波串、耗散率、标度律等. 研究表明,湍动能主要来自于速度场螺旋分量的贡献;各向同性湍流的小尺度脉动对压缩性更为敏感,并且压缩性的增强加快了湍流大 尺度脉动向小尺度脉动的湍动能输运;随着湍流Mach数的升高,胀量(压缩)耗散率所占比率也显著增长. 标度律分析表明,强可压缩湍流的横向速度结构函数仍然具有扩展自相似性;当阶数较高(p ≥ 5)时,纵向速度结构函数的扩展自相似性则不再成立. 对于压缩性较弱的湍流,与不可压缩湍流一致,横向湍流脉动的间歇性要强于纵向湍流脉动;而对于强可压缩湍流,纵向湍流脉动的 间歇性要强于横向湍流脉动.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号