首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Classical shallow-ice theory assumes that bed topography under ice sheets has slopes comparable to the surface slope of the ice sheet. A modification of the classical steady-state theory which allows for significant bed topography on shorter length scales has recently been developed by Morland (Proc. R. Soc L. Ser. A., 456, 1711-1739 ), but his theory requires explicit integration of the ice-flow equations over the topography length scale, which may be below the grid size of typical numerical ice sheet models. Here we present a method for parameterising the effect of basal topography of wavelengths much greater than ice thickness but much smaller than the horizontal extent of the ice sheet on the bulk flow of the ice sheet. In particular, we are able to show through the use of a multiple-scales expansion technique that the effect of such topography is described by a simple correction factor applied to the classical expression for ice flux. This correction factor dispenses with the need to integrate explicitly over the topography length scale and could allow the effect of such topography to be included in numerical models with limited grid size. Examples are given for the practical implementation of this `correction factor method' in calculations of the steady-state shape of ice sheets. Received August 20, 2002 / Accepted February 3, 2003/ Published online May 9, 2003 / L. W. Morland  相似文献   

2.
Wu  T.  Hutter  K. 《Transport in Porous Media》1999,34(1-3):3-15
The ice-till mixtures at the base of glaciers and ice sheets play a very important role in the movement of the glaciers and ice sheets. This mixture is modelled as an isothermal flow which is overlain by a layer of pure ice. In this model, ice is treated as usual as a very viscous fluid with a constant true density, while till, which is assumed to consist of sediment and bound (that is, moving with the sediment) interstitial water and/or ice, is also assumed in a first approximation to behave such as a fluid. For an isothermal flow below the melting point the water component can be neglected. Therefore, only the mass and momentum balances for till and ice are needed. To complete the model, no-slip and stress-free boundary conditions are assumed at the base and free-surface, respectively. The transition from the till-ice mixture layer to the overlying pure ice layer is idealized in the model as a moving interface representing in the simplest case the till material boundary, at which jump balance relations for till and ice apply. The mechanical interactions are considered in the mixture basel layer, as well as at the interface via the surface production. The interface mechanical interaction is supposed to be only a function of the volume fraction jump across the interface. In the context of the thin-layer approximation, numerical solutions of the lowest-order form of the model show a till distribution which is reminiscent to the ice-till layer in geophysical environment.  相似文献   

3.
Hyuck Chung  Colin Fox 《Wave Motion》2009,46(7):468-479
Ocean waves travel deep into ice fields in the polar regions, both affecting the formation of sea-ice and causing its break-up. Recently, it has been shown that a relatively simple linear water and bending wave theory can predict the decay rate of the wave energy travelling through fractured ice sheets and floes at the geophysically important wave periods of 6–15 s. That work used simple free-edge conditions. A possible improvement to the current model is to better represent the effective connection due to partially frozen cracks that occur in practice. The Wiener–Hopf technique gives explicit formulae for the velocity potential and surface deflection, expressed as series expansions over the modes of the elastic plate floating on water of finite depth, with the coefficients in the expansion given as functions of four constants. These constants are determined by a system of four linear equations, represented by a 4-by-4 matrix and a four-element vector. The elements of the matrix are given as explicit functions of relationship between edge conditions. General connections between ice sheets may be interpreted as a vertical and a rotational spring providing transition conditions for the shear force and the bending moment. The reflection and the transmission of waves can then be simply calculated as direct functions of the connection conditions. Conversely, reflected and transmitted waves allow complete characterization of the effective connection conditions at a material discontinuity.  相似文献   

4.
汪春辉  王嘉安  王超  郭春雨  朱广元 《力学学报》2021,53(11):3110-3123
以往针对结构物垂直贯穿冰层破裂的研究多不考虑水的作用, 与实际应用场景不符. 本文应用 LS-DYNA 有限元软件建立了基于结构化-任意拉格朗日欧拉(S-ALE)流固耦合方法及罚函数接触算法的冰?水?结构物耦合作用数值模拟方法. 采用欧拉算法描述空气域和水域, 采用拉格朗日算法描述圆柱体结构和冰层结构, 使用弹塑性应变率模型表征冰材料力学性质. 自主搭建了圆柱体垂直贯穿冰层试验台架, 验证了有限元方法计算结构物?冰层相互作用问题的可行性. 通过模拟圆柱体垂直出水破冰过程, 并与无水环境下圆柱体垂直贯穿冰层破裂过程进行对比. 结果表明: 有水环境下结构物?冰层间作用存在“水垫效应”; 冰层突破载荷极值大小与有、无水环境无显著变化; 有水环境下的结构物突破冰层冰载荷持续时间明显长于无水环境下持续时间; 有水环境冰层弹性变形阶段更长, 且有水环境冰层挠度变化大于无水环境下的挠度变化. 本文研究成果为极地冰区环境下结构物垂直出水破冰的结构强度计算及优化设计提供了研究基础.   相似文献   

5.
This paper summarizes a combined analytical-computational technique which models vortex sheets in transonic potential-flow methods. In this approach, the inviscid nature of discontinuities across vortex sheets is preserved by employing the step function to remove singularities at these surfaces. The location and strength of the vortex sheets are determined by satisfying the flow-tangency boundary condition and the vorticity transport equation. The theory is formulated for the general three-dimensional case, but its application is confined to the problem of computing slipstreams behind propellers with free-vortex blading in axisymmetric flows.  相似文献   

6.
The three-dimensional problem of steady-state forced vibrations of fluid and semiinfinite ice sheet under the action of a local external load traveling along the rectilinear sheet edge at a constant velocity is considered. Two cases are analyzed. In the first case the fluid surface outside the ice sheet is free and in the second the fluid is confined by a rigid vertical wall and the ice sheet edge adjacent to the wall can be both clamped and free. The ice sheet is simulated by a thin elastic isotropic plate floating on the surface of fluid of finite depth. The load traveling velocity is assumed to be not higher than the minimum phase velocity of the flexural-gravity waves (subcritical regime). The solution to the linear problem is obtained by means of the integral Fourier transform and matching the expansions of the velocity potential in the vertical eigenfunctions. Examples of the numerical investigation of the ice sheet and fluid displacements are given.  相似文献   

7.
The dynamic equation of a viscoelastic floating ice plate under a triangular pulse load is solved analytically through the Hankel transformation and the Laplace transformation. The effects of physical and geometrical parameters of the problem on the displacement response as a function of time and spatial coordinate are discussed.  相似文献   

8.
The analytical self-similar solution to the nonlinear problem of the front regime of heatand- mass transfer in a gas hydrate reservoir under the negative temperature conditions is obtained. In the initial state the reservoir is assumed to be saturated with a heterogeneous gas hydrate–ice–gas mixture. In particular cases there may be no ice or/and gas. The ice and gas are formed behind the gas hydrate dissociation front. The calculations are presented for a stable hydrate–gas system. The critical curves are constructed in the well-pressure–reservoir-permeability plane. These curves separate the domains of the front regime and the regime of volume gas hydrate dissociation ahead of the front. The velocity of the gas hydrate dissociation front is investigated as a function of various problem parameters. The characteristic temperature and pressure distributions corresponding to various regimes on the diagram are investigated.  相似文献   

9.
The dissociation of gas hydrate coexisting with ice in a low-temperature natural reservoir is investigated. A mathematical model of the process consisting of a generalization of the Stefan problem and containing two unknown moving phase transition boundaries — the hydrate dissociation and ice melting fronts — is constructed. It is shown that in high-permeability reservoirs the velocity of the dissociation surface is higher than that of the ice melting surface. As the permeability decreases, the fronts change places. The problem is solved in the self-similar approximation.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 84–92, March–April, 1993.  相似文献   

10.
We analyze the linear stability of rectilinear compressible current-vortex sheets in two-dimensional isentropic magnetohydrodynamics, which is a free boundary problem with the boundary being characteristic. In the case when the magnitude of the magnetic field has no jump on the current-vortex sheets, we find a necessary and sufficient condition of linear stability for the rectilinear current-vortex sheets, showing that magnetic fields exert a stabilization effect on compressible vortex sheets. In addition, a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, occurs in a priori estimates of solutions to the linearized problem for a rectilinear current-vortex sheet, as the Kreiss–Lopatinskii determinant associated with this linearized boundary value problem has roots on the boundary of frequency spaces. In this study, the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss–Lopatinskii condition may fail simultaneously, plays a crucial role in the a priori estimates.  相似文献   

11.
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number \(M > \sqrt{2}\) and instability when \(M < \sqrt{2}\) ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when \(M > \sqrt{2}\) . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin–Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss–Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash–Moser–Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.  相似文献   

12.
Tkacheva  L. A. 《Fluid Dynamics》2022,57(2):173-182
Fluid Dynamics - The solution to the problem on the behavior of an ice cover on the surface of an ideal incompressible fluid of finite depth under a local pressure domain in the presence of a shear...  相似文献   

13.
The paper presents the application of a discrete element technique for the study of the plane strain problem of the interaction between a moving ice sheet and a flexible stationary structure. The discrete element technique accounts for the generation of failure within an initially intact ice sheet. The failure of the ice corresponds to situations where the ice can exhibit combinations of brittle fragmentation and viscoplastic flow. The modelling also accounts for size dependency in the strength of the ice after fragmentation. The inter-fragment interactions are modelled by non-linear constraints which includes Coulomb frictional behaviour. The computational scheme is used to evaluate the time history of the average contact stresses and the distribution of local contact stresses at the ice–structure interface in the fragmentation zone.  相似文献   

14.
随着全球气候变暖,北极活动频次的逐渐增加,海冰与波流的耦合作用成为了国内外的热点研究问题. 海冰的存在会改变波浪的传播特性和色散关系,也会改变海流运动的边界条件,使得海流在冰面下边界处可能产生漩涡脱落等现象;而海冰在波浪、海流等动力作用下,也会不断发生生消、断裂、重叠和堆积等动力学行为.海冰与波流耦合动力学中存在几大难点问题:一是海冰模型的构建,需要针对海冰类型和性质的不同,考虑不同区域的海冰分布情况建立合适的海冰模型.二是冰水之间的耦合问题,海冰边界影响着冰水之间的动量和能量交换,对于冰盖、浮冰等不同类型海冰,需分别处理边界问题;冰水耦合引起的海冰破坏,其破坏模式也是多样的.三是波流联合场的构建,目前尚无较好的方法构建波流联合场,导致海冰与波流联合场作用的相关研究仍极其匮乏.因此,本文针对海冰与波流相互作用问题,回顾和讨论国内外对海冰与波浪、海冰与海流及海冰与波流相互作用的研究现状和技术难点,展望了未来可以进一步深入研究的问题,提出了初步的思路以供参考.   相似文献   

15.
The two-dimensional problem of ice cover perturbation by a dipole starting to move uniformly, rectilinearly, and horizontally in a liquid initially at rest is considered. It is shown that stationary waves of two different types can be established on the liquid/ice interface, depending on the ice thickness and the dipole velocity. Examples of the numerical investigation of these waves are presented.  相似文献   

16.
A method for analyzing the bending of an ice sheet subjected to a moving load is proposed. The problem is solved in a dynamic formulation. The algorithm of solution is based on the finiteelement method and the finite-difference method. The method proposed allows one to determine the stress-strain state of an ice sheet for any law of motion of a load over ice. Two versions of initial conditions are considered. Examples of calculations are given. Komsomol’sk-on-Amur State Technical University, Komsomol’sk-on-Amur 681013. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 4, pp. 243–248, July–August, 1999.  相似文献   

17.
This paper focuses on modeling of the interface between a rigid substrate and a thin elastic adherend subjected to mixed-mode loading in the peel test configuration. The context in which the investigation is situated is the study of bond between fiber-reinforced polymer (FRP) sheets and quasi-brittle substrates, where FRP sheets are used as a strengthening system for existing structures. The problem is approached both analytically and numerically. The analytical model is based on the linear-elastic fracture mechanics energy approach. In the numerical model, the interface is discretized with zero-thickness contact elements which account for both debonding and contact within a unified framework, using the node-to-segment contact strategy. Uncoupled cohesive interface constitutive laws are adopted in the normal and tangential directions. The formulation is implemented and tested using the finite element code FEAP. The models are able to predict the response of the bonded joint as a function of the main parameters, which are identified through dimensional analysis. The main objective is to compute the debonding load and the effective bond length of the adherend, i.e., the value of bond length beyond which a further increase has no effect on the debonding load, as functions of the peel angle. The detailed distributions of interfacial shear and normal stresses are also found. Numerical results and analytical predictions are shown to be in excellent agreement.  相似文献   

18.
The problem of the interaction of surface and flexural-gravity waves with a vertical barrier is solved in a two-dimensional formulation. It is assumed that the fluid is ideal and incompressible, has infinite depth, and is partially covered with ice. The ice cover is modeled by an elastic plate of constant thickness. The eigenfrequencies and eigenmodes of oscillation of the floating elastic ice plate, the deflection and deformation of ice, and the forces acting on the wall are determined.  相似文献   

19.
气垫平台破冰阻力的模型试验研究   总被引:1,自引:0,他引:1  
黄焱  孙策  田育丰 《力学学报》2021,53(3):714-727
通过开展低温拖曳冰水池物理模型试验,测试气垫平台在遭遇平整冰时的破冰过程和破冰阻力.在模型试验中,以一座现役破冰气垫平台为原型,建立了合理的模型试验相似律.依据相似律分别对原型平台的结构框架、气道结构、围裙结构和垫升系统等部分进行了模拟,从而得到一套与原型平台结构型式和垫升机制相似的模型平台.模型平台在试验拖车的拖曳下通过低温冰水池中的模型冰排,分别以垫升高度和航行速度为试验参数,对不同试验工况下气垫平台的破冰过程进行测试.通过对模型试验现象和结果的分析,深入解析了气垫平台的破冰过程,揭示了气垫平台的破冰机理.通过试验发现,非全垫升状态更有利于模型平台的破冰作业.气垫平台破冰的关键机理是在冰排底部形成稳定的气腔,从而促使冰排在结构的下压作用和气腔的上顶压力下发生弯曲破坏.在试验中测试了气垫平台破冰风压随结构姿态的变化,在时频域内对风压的变化情况进行了分析,并讨论了风压随航行速度的变化规律.以此为基础,对气垫平台破冰阻力随垫升高度和航行速度的变化规律进行分析,从而为该类气垫平台的结构设计和操船方法提供必要的基础性数据和参考依据.   相似文献   

20.
A laboratory experiment is constructed to simulate the density-driven circulation under an idealized Antarctic ice shelf and to investigate the flux of dense and freshwater in and out of the ice shelf cavity. Our results confirm that the ice front can act as a dynamic barrier that partially inhibits fluid from entering or exiting the ice shelf cavity, away from two wall-trapped boundary currents. This barrier results in a density jump across the ice front and in the creation of a zonal current which runs parallel to the ice front. However despite the barrier imposed by the ice front, there is still a significant amount of exchange of water in and out of the cavity. This exchange takes place through two dense and fresh gravity plumes which are constrained to flow along the sides of the domain by the Coriolis force. The flux through the gravity plumes and strength of the dynamic barrier are shown to be sensitive to changes in the ice shelf geometry and changes in the buoyancy fluxes which drive the flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号