首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The deformation around a 500-nm deep Berkovich indent in a large grained Fe sample has been studied using high resolution electron back scatter diffraction (EBSD). EBSD patterns were obtained in a two-dimensional map around the indent on the free surface. A cross-correlation-based analysis of small shifts in many sub-regions of the EBSD patterns was used to determine the variation of elastic strain and lattice rotations across the map at a sensitivity of ~±10?4. Elastic strains were smaller than lattice rotations, with radial strains found to be compressive and hoop strains tensile as expected. Several analyses based on Nye's dislocation tensor were used to estimate the distribution of geometrically necessary dislocations (GNDs) around the indent. The results obtained using different assumed dislocation geometries, optimisation routines and different contributions from the measured lattice rotation and strain fields are compared. Our favoured approach is to seek a combination of GND types which support the six measurable (of a possible nine) gradients of the lattice rotations after correction for the 10 measurable elastic strain gradients, and minimise the total GND line energy using an L1 optimisation method. A lower bound estimate for the noise on the GND density determination is ~±1012 m?2 for a 200-nm step size, and near the indent densities as high as 1015 m?2 were measured. For comparison, a Hough-based analysis of the EBSD patterns has a much higher noise level of ~±1014m?2 for the GND density.  相似文献   

2.
We use small Bi2212 mesas for in situ detection of THz radiation from the large mesas at high bias at which Joule heating is important. We numerically analyze the heat balance in the emitter mesas taking into account anisotropy and temperature dependencies of all parameters involved in the heat transport. The mesa temperature is spatially non-uniform and can exceed Tc in the middle part of the mesa. The non-uniform temperature distribution can be important for synchronization of radiation from the intrinsic Josephson junctions.  相似文献   

3.
《Current Applied Physics》2014,14(4):582-585
We have performed a synchrotron X-ray microdiffraction to investigate the variation of the local strain-field across the interface in Pb(Zr0.52Ti0.48)O3/Ni0.8Zn0.2Fe2O4/Pb(Zr0.52Ti0.48)O3 (PZT–NZFO–PZT) tri-layered structure. In this study, we show that the in-plane lattice parameters of the NZFO lattice depend strongly on the piezoelectric strain of the PZT layer. This result explains that an electric-field-induced piezoelectric strain from the PZT layer is effectively transferred to the NZFO layer. Furthermore, the local strain persists within 20 μm away from the interface, inducing changes of magnetic responses via the inverse magnetostrictive effect.  相似文献   

4.
Certain two-component reaction-diffusion systems on a finite interval are known to possess mesa (box-like) steady-state patterns in the singularly perturbed limit of small diffusivity for one of the two solution components. As the diffusivity D of the second component is decreased below some critical value Dc, with Dc=O(1), the existence of a steady-state mesa pattern is lost, triggering the onset of a mesa self-replication event that ultimately leads to the creation of additional mesas. The initiation of this phenomena is studied in detail for a particular scaling limit of the Brusselator model. Near the existence threshold Dc of a single steady-state mesa, it is shown that an internal layer forms in the centre of the mesa. The structure of the solution within this internal layer is shown to be governed by a certain core problem, comprised of a single nonautonomous second-order ODE. By analysing this core problem using rigorous and formal asymptotic methods, and by using the Singular Limit Eigenvalue Problem (SLEP) method to asymptotically calculate small eigenvalues, an analytical verification of the conditions of Nishiura and Ueyama [Y. Nishiura, D. Ueyama, A skeleton structure of self-replicating dynamics, Physica D 130 (1) (1999) 73-104], believed to be responsible for self-replication, is given. These conditions include: (1) The existence of a saddle-node threshold at which the steady-state mesa pattern disappears; (2) the dimple-shaped eigenfunction at the threshold, believed to be responsible for the initiation of the replication process; and (3) the stability of the mesa pattern above the existence threshold. Finally, we show that the core problem is universal in the sense that it pertains to a class of reaction-diffusion systems, including the Gierer-Meinhardt model with saturation, where mesa self-replication also occurs.  相似文献   

5.
《Current Applied Physics》2020,20(5):611-618
Pure BST and doped BSTF (with BSTF2: Fe2O3 2 wt % and BSTF4: Fe2O3 4 wt %) ceramics were prepared by solid state reaction. XRD pattern showed the different phases were formed depend on the weight percent of Fe2O3. The crystal size and lattice parameters increased while the lattice strain decreased. The topography of the sintered samples shows increase of the grain size with increasing Fe2O3 ratio and hence enhances the compaction of ceramics. Broadband dielectric spectroscopy was employed to investigate the effect of magnetite nanoparticle on the dielectric properties of the pure BST ceramic. The interfacial polarization and the conductivity contribution reflect the high values of permittivity and its gradual increase as frequency decreases. The two BSTF samples show relaxation peak dynamic originated from presence of immobile species/electrons at low temperatures and defects/vacancies results from the formation of oxygen vacancies originates from the spontaneous change in oxidation states of Fe ions (Fe 3+/Fe2+) at high temperatures. The relaxation rate obeys Arrhenius law at high temperatures in case of BST sample with activation energy 225 kJ/mol. This high value of activation energy at higher temperatures reflects and confirms the slowed down of the dynamics at the interphase and the decoupling nature of the OH-dynamic and the interfacial polarization.  相似文献   

6.
InP-based InGaAsP photodetectors targeting on 1.06 μm wavelength detection have been grown by gas source molecular beam epitaxy and demonstrated. For the detector with 200 μm mesa diameter, the dark current at 10 mV reverse bias and R0A are 8.89 pA (2.2 × 10−8 A/cm2) and 3.9 × 105 Ω cm2 at room temperature. The responsivity and detectivity of the InGaAsP detector are 0.30 A/W and 1.45 × 1012 cm Hz1/2 W−1 at 1.06 μm wavelength. Comparing to the reference In0.53Ga0.47As detector, the dark current of this InGaAsP detector is about 570 times lower and the detectivity is more than ten times higher, which agrees well with the theoretical estimation.  相似文献   

7.
Erbium (Er)-doped fluoride crystals (YLF, BYF, CaF2, etc.) are well-known as active media for solid-state lasers emitting in IR and VIS spectral domains, and as materials for efficient near-IR to VIS upconversion. In this paper, we report on the study of conversion of IR light from an ~1.5 μm spectral region to an ~1 μm spectral domain in low-phonon RE-doped fluoride crystals CaF2 (RE=Er3+ Yb3+). Energy transfer processes taking place at selective pulsed and CW laser excitation are investigated experimentally. It is shown that in the CaF2:RE crystals efficient conversion of IR radiation from the ~1.5 μm region to the ~1 μm region occurs, and these crystals are perspective for using in spectral converters for enhancing solar cell efficiency.  相似文献   

8.
分子束外延PbTe单晶薄膜的反常拉曼光谱研究   总被引:4,自引:0,他引:4       下载免费PDF全文
采用分子束外延(MBE)方法在BaF2(111)衬底上生长了高质量的PbTe单晶薄膜, 拉曼光谱测量观察到了表面氧化物的振动模、布里渊区中心(q≈0)纵光学(LO)声子振动模以 及声子-等离子激元耦合模振动.随着显微拉曼光谱仪激光光斑聚焦深度的改变,各拉曼散射 峰的峰位、积分强度、半高宽等都表现出不同的变化趋势. 随着激光光斑聚焦位置从样品表 面上方3μm处变化到表面下方3μm处,PbTe外延薄膜的LO声子频率从119cm-1移 动到124cm-1关键词: PbTe外延薄膜 拉曼散射 纵光学声子  相似文献   

9.
《Current Applied Physics》2020,20(6):765-772
Ho3+/Ce3+ co-doped K2YbF5 microcrystals were synthesized by solvent-thermal method. Under excitation of 980 nm laser diode, effectively visible and 2 μm-infrared luminescence of Ho3+ ion were obtained in the microcrystals. By changing Ce3+-ion doping concentration, the luminescence properties of visible and 2 μm emission were effectively regulated. At low Ce3+-ion doping level, the red and green upconversion emission obviously increases and decreases respectively with the increase of Ce3+-ion amount in the samples, meanwhile the intensity of 2 μm fluorescence changes very little. At high Ce3+-ion doping level, the intensities of the red and green emission both decrease with the increase of Ce3+-ion concentration, while the 2 μm emission intensity increases obviously. In the sample doped with 16% Ce3+ ion, the intensity of 2 μm emission is about 4.5 times that of the sample without Ce3+ ion, and the corresponding quantum efficiency is about 78.3%. The result is attributed to the influence of the different cross relaxation between Ho3+ and Ce3+ ion in luminescence process at low and high Ce3+-ion doping concentration. The corresponding luminescence mechanism and energy transfer process were discussed in detail.  相似文献   

10.
Trivalent neodymium doped multi-component lead borate titanate aluminumfluoride (LBTAFNd) glasses were prepared and characterized as a function of Nd3+ ions concentration through optical absorption, NIR luminescence and decay measurements. The intensity (Ω2,4,6) and other radiative parameters were determined within the frame work of Judd–Ofelt theory. The intensities of absorption bands were expressed in terms of experimental oscillator strengths. Reasonably small root mean square deviation of ±0.384×10?6 obtained between the experimental and calculated oscillator strengths indicates the validity of intensity parameters. Upon 805 nm laser excitation, the NIR emissions at 0.92 μm (4F3/24I9/2), 1.07 μm (4F3/24I11/2) and 1.35 μm (4F3/24I13/2) were observed. The spectroscopic quality factor has been determined from the Ω4 and Ω6 intensity parameters as well as the intensities of emission bands centered at 1.07 and 1.35 μm. The decay curves of the 4F3/2 excited state were recorded by monitoring the emission and excitation wavelengths at 1.07 μm and 805 nm, respectively. The decay curves exhibit single exponential behavior for all the glasses. The laser characteristic parameters of 4F3/24I11/2 (1.07 μm) transition were determined and compared with other reported glasses.  相似文献   

11.
基于传输速率方程,对Ho3+:ZBLAN光纤激光器的动态特性——上能级粒子数以 及输出激光功率的弛豫振荡特性进行了数值分析.通过忽略光纤参数对传输方向的依赖性,抽运光 和信号光的功率传输方程被分别简化处理.结果表明,在5I6能级的 粒子数首先经历 一次弛豫振荡后,5I65I7能级的粒 子数交替弛豫振荡并达到稳态;同 样,在3μm波长的激光功率首先经历一次弛豫振荡后,3μm和2μm波长的激光功率交替弛豫 振荡并达到稳态,而且,弛豫振荡时的峰值功率远大于稳态时的激光功率. 关键词: 光纤激光器 动态特性 光纤激光理论 钬光纤  相似文献   

12.
Using first-principles calculation, the effect of lattice strain on the oxygen vacancy formation at CeO2(111) surface has been investigated. The tensile strain facilitates the oxygen vacancy formation at the surface and the compressive strain hinders the process. This is in part due to the strengthening or weakening of the surface Ce–O bond under the lattice strain. On the other hand, a more open surface with a larger lattice constant can better accommodate the larger Ce3+ and thus facilitate the structural relaxation of the reduced surface. The studies on the strain effect on the atomic hydrogen adsorption at the defect-free CeO2(111) surface show that the adsorption strength monotonously increases with the increase of the lattice strain, further confirming the tunable surface chemical activity by lattice strain.  相似文献   

13.
Characteristics of two different multichannel wavelength division multiplexing (WDM) systems composed of two-dimensional (2D) hetero photonic crystals (HPCs) are introduced. One utilizes five photonic crystal (PC) units, each fabricated with triangular and rectangular lattice. The other consists of five PC units in rectangular lattice. Both systems have a lattice constant difference of 4 nm between adjacent PC units, and both systems apply silicon rods with a radius of 120 nm. Finite-difference time-domain (FDTD) method and plan wave expansion (PWE) method reveal the ability of wavelength spacing ~8 nm with high quality factor (Q) in a system based on triangular and rectangular lattice; and ~8 nm with almost constant transmission efficiency based on rectangular lattice.  相似文献   

14.
We show a new way to fabricate well-defined individual dislocations in SiGe. We started with a fully pseudomorphic but metastable SiGe layer grown on Si(0 0 1) by molecular beam epitaxy. Next, elongated (1 mm) mesa stripes with various widths (0.5–3 μm) were fabricated by a combination of isotropic and anisotropic etching. For smaller stripes, elastic relaxation of the strained SiGe layer can occur, transforming the originally biaxial strained layer into uniaxial strained subsystems. Subsequent strain relaxation caused by high temperature treatments leads to the formation of individual dislocation along the mesa stripes. The number of parallel dislocation can be adjusted by the original strain (Si:Ge ratio and layer thickness) and the mesa widths. We were able to fabricate structures with exactly one dislocation. Finally, contact pads were added to the stripes enabling the electrical characterization of individual dislocation.  相似文献   

15.
Complex investigations of the photoconductivity and photoinduced absorption together with the piezoelectric features were performed for the AgGaGeS4 semiconducting single crystals under the influence of 3.5 μs CO2 (80 mJ) pulsed laser emitting at 10.6 μm. These crystals are transparent in the wide spectral range 0.4–17 μm, which allows operating due to their properties in the spectral range covering the excitation of the phonons and electron subsystem. The piezoelectric properties show substantial increment during illumination by microsecond CO2 laser and irreversible relaxation after swathing off the laser excitation. The temperature dependent studies of absorption and photoconductivity confirm the main role of intrinsic defects forming the tails of electronic states below the bottom of conduction band gap. Principal role of IR-induced electron–phonon interactions in the observed changes of the piezoelectricity is demonstrated.  相似文献   

16.
F.J. Owens 《Molecular physics》2013,111(5):1171-1178
The rate of dissociation of the rectangular N4 ? ion into two diatomic molecules has been calculated in the ionic KN3 lattice assuming the initial step is the transfer of three lattice phonons to the internal vibrational states of the molecule causing an internal vibrational excitation of the N4 ?. The rate of dissociation of the molecule is then calculated using a stochastic random walk approach which enables a determination of the mean time for the molecule to be vibrationally excited to the dissociative state. The results are in order of magnitude agreement with the measured reaction rates at a number of temperatures suggesting the possible role of phonon relaxation processes in unimolecular chemical reactions in the bulk solid state.  相似文献   

17.
Dielectric measurements of CsHSeO4 show a distinct relaxation at low frequencies at several isotherms (T < 363 K). For example, the relaxation frequency is around 4 kHz at 323 K and increases to higher frequencies (~ 100 kHz) as the temperature increases. The relaxation has an activation energy of 0.8 eV, which is in close agreement with that associated with transport of charge carriers. We suggest that the observed dielectric relaxation could be produced by the H+ jump and SeO4? 2 reorientation that cause distortion and change the local lattice polarizability, inducing dipoles like HSeO4?.  相似文献   

18.
《Solid State Ionics》2006,177(13-14):1107-1110
The dispersion curves of the dielectric response of NH4HSO4 show that the corrected imaginary part of permittivity, εʺ, and its real part ε′ versus frequency reveal a dielectric relaxation around 9.1 × 105 Hz at 31 °C, which shifts to higher frequencies (∼ 106 Hz) as the temperatures increases. The relaxation frequency shows an activated relaxation process over the temperature range 31–83 °C with activation energy Ea = 0.14 eV, which is close to that derived from the dc conductivity. We suggest that the observed dielectric relaxation could be produced by the H+ jump and SO4 reorientation that cause distortion and change the local lattice polarizability inducing dipoles like HSO4.  相似文献   

19.
A facile two-step approach has been used for the synthesis of porous SnO2 rods: the initial room-temperature precipitation of precursor SnC2O4 and its subsequent thermal decomposition at 550 °C. Both the as-obtained porous SnO2 microrods (length ~10.0?±?3.5 μm, diameter ~1.1?±?0.4 μm) and submicrorods (length ~5.8?±?1.9 μm, diameter ~0.4?±?0.1 μm) are the crystalline mixtures of major tetragonal and minor orthorhombic crystal phases, showing a tetragonal fraction of 84.7 and 87.0 %, respectively. When applied as a lithium-ion battery anode, the porous submicrorods (specific surface area ~13.6 m2 g?1) can deliver an initial discharge capacity of 1,730.7 mAh g?1 with a high coulombic efficiency of 61.6 % and show the 50th discharge capacity of 662.8 mAh g?1 at 160 mA g?1 within a narrow potential range of 10.0 mV to 2.0 V. Similarly, even the anode of porous microrods (specific surface area ~11.8 m2 g?1) can still exhibit an initial discharge capacity of 1,661.1 mAh g?1 at 160 mA g?1 with a coulombic efficiency of 60.9 %. Regardless of the polymorphic nature, the acquired porosity may only alleviate the huge volume change of anodes for the first cycle; thus, the structural parameters of average size and specific surface area can be feasibly associated with the enhanced lithium storage capability. Anyway, these indicate a facile oxalate precursor method for the controlling synthesis and high performance of rodlike SnO2 for lithium-ion batteries.  相似文献   

20.
Electrically switchable two-dimensional photonic crystals were demonstrated using polymer-dispersed liquid crystal materials based on the Talbot self-imaging effect of a single photomask. With the photomask subjected to a collimated Ar+ laser beam operating at 488 nm, a three-dimensional spatial light intensity pattern was created due to the Talbot self-imaging effect. The spatial light intensity pattern was then recorded inside a cell filled with the liquid crystal/prepolymer mixture to create photonic crystal structures. The surface morphology of the photonic crystals was examined by an atomic force microscopy. It showed square structures with a lattice constant of ∼0.9 μm. The diffraction and electro-optical properties were also presented. This approach shows a simple and fast fabrication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号