首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the thermodynamic properties of Zr–Si liquid alloys and their propensity to amorphization is studied. The temperature–concentration dependences of the thermodynamic properties of melts are presented using the concept of associated solutions. It is shown that the range of amorphization coincides with the range of the predominant concentration of Zr3Si associative groups with low formation entropy.  相似文献   

2.
3.
Si—Al and Si—Ti binary-oxide thin films including Rhodamine B (RB) have been prepared. They were dip-coated as a function of time after mixing of each sol-gel reaction system. The absorption and fluorescence spectra of the individual films have been observed. These spectra were analyzed in order to clarify the behavior of RB along with the change in the environment around the RB molecules, caused by the progress of the sol-gel reaction, in the fluid sol and the prepared thin films. Some amount of the RB dimers (H- and J-types) were formed in the Si—Al and Si—Ti binary-oxide films (Si : M = 75 : 25) prepared at the initial stage of the sol-gel reaction and aged under relative humidity of 60%. In the case of Si—Al binary-oxide films, the amount of the J-dimer decreased along with the reaction time at which the films were prepared, indicating that growing polymer networks of metal alkoxides around the RB molecules prevent the formation of the J-dimer. On the other hand, larger amounts of the H- and J-dimers were formed in the Si—Ti binary-oxide films prepared at longer reaction time of the solution. RB interacts more strongly with —TiOH compared with —AlOH. In the case of the Si—Ti binary-oxide films, with the progress of the sol-gel reaction, RB molecules in the prepared films easily cohere around the —TiOH and form the dimers because of increase in the amount of the —TiOH and contraction in the volume of the spaces where RB molecules exist.  相似文献   

4.
Spin traps, which are diamagnetic centers (SiO)2Si, are used to register low-molecular radicals OH, NH2, and H formed by the reactions of H2O and NH3 molecules with the radicals (Si–O)3Si and (Si–O)3Si–O stabilized on the silica surface. The experimental data and the results of quantum-chemical calculations for model systems are used to determine the mechanism and thermochemical characteristics of these reactions. A new paramagnetic center (Si–O)2SiNH2 was identified on the silica surface, and its radiospectroscopic characteristics are determined.  相似文献   

5.
The pitting corrosion susceptibility of pure Al and three Al-Si alloys, namely (Al-6%Si), (Al-12%Si) and (Al-18%Si) has been studied in 0.04 M KSCN solution. Measurements were carried out under the effect of various experimental conditions using cyclic polarization, potentiostatic and galvanostatic techniques. In all cases, the potentiodynamic anodic polarization curves do not exhibit active dissolution region due to spontaneous passivation. The passivity is due to the presence of a thin film of Al2O3 on the anode surface. The passive region is followed by pitting corrosion, at a certain critical potential, pitting potential (Epit), as a result of breakdown of the passive film by SCN? anions. Cyclic polarization measurements allowed the determination of the pitting corrosion parameters, namely the pitting potential and the repassivation potential (Erp). Alloyed Si decreased the passive current (jpass) and shifted both Epit and Erp towards more positive values. Thus alloyed Si suppressed pitting attack. The effect of illumination on passivity and the initiation of pitting corrosion on Al in KSCN solutions was also studied. It is observed that illumination of Al leads to an increase in its pitting corrosion resistance-apparent from jpass, Epit, and Erp measurements in aggressive KSCN solutions.  相似文献   

6.
Bombardment of a silicon target in a high vacuum with a molecular beam (mixture of high energy H2+N2, obtained by charge exchange) and a thermal beam of O2 produces on the target a variety of compounds. The target is then bombarded by the same molecular beams which produce, extracted by an electrostatic field at an energy of about 10 keV, molecular ions due to the compounds thus formed. These ions are analysed (electromagnet) to give a primary spectrum of ions according to their mass, which are individually selected and dissociated in a collision cell (same H2+N2 mixture). Mass analysis of the dissociation fragments leads to the identification of silicon clusters (Si)n and of Si–O–N–H derivatives, the fragmentations of which permit a definitive determination of their molecular complexity. Dissociation spectra have thus been obtained for some of the most intense peaks of the primary spectrum, on the one hand, and on the other hand for some peaks of lower intensity but of special interest to us (see below). The composition of the fragments is confirmed by the study of the satellite ions derived from the natural 28, 29 and 30 isotopes of silicon, and by the use of deuterium instead of hydrogen. None of the Si–O–N–H derivatives obtained was apparently known earlier. It is shown that some of these molecules (those ‘of special interest to us’) may be identical with sila-analogues of standard amino acids and of nucleic bases: the fact that their fragmentations are identical with those of the corresponding carbon analogues speaks in favour of a structural identity. However, one cannot yet distinguish between the various possible isomeric arrangements, as none of them has been independently prepared, which excludes a direct comparison with reference samples, and as these isomers might give identical fragments; we hope to be able to resolve this ambiguity later. Anyhow, the substances formed are the most complex molecular silicon derivatives so far produced: e.g. Si2O2NH5, Si3O2NH7, Si4O3NH9, Si4O2N2H4, Si4ON3H5, Si5O3N2H10, Si5O2NH11, corresponding to sila-glycine, sila-alanine, sila-threonine, sila-uracile, sila-cytosine, sila-valine, sila-glutamine, – or isomers. Similar results have been obtained using a silicon dioxide target and high energy molecular beams of hydrogen and of nitrogen, without thermal oxygen, or with a carborundum target. © 2000 Académie des sciences / Éditions scientifiques et médicales Elsevier SASmolecular impact / silicon derivatives / amino-acid silicon analogues  相似文献   

7.
With an increase in the concentration of additives, the hydration numbers of compounds decrease. Thus, in a saturated 54.6% solution, urea loses approximately 3/4 of the initial amount of water, forming an aquacomplex of the composition (NH2)2CO?H2O. In a supersaturated 44% solution, the sodium chloride aquacomplex is dehydrated by 2/3, and in a supersaturated 67% solution, sodium sulfate is dehydrated by 5/6. The density of these solutions is 1.354÷1.360 g/cm3 (44% NaCl) and 1.800÷1.849 g/cm3 (67% Na2SO4). In a saturated urea solution, NaNO3, NaCl, and Na2SO4 complexes lose 53÷55% of hydration water. It is shown that the interactions in the binary water–urea system somewhat increase the hydration number of the salts (structural hydration). The hydration water density, a structurally important characteristic, increases in the series of solutions of urea, NaNO3, NaCl, and Na2SO4. In the same series of additives, the excess volume of binary water–urea and water–salt systems becomes more negative.  相似文献   

8.
9.
The crystallization behavior of amorphous Fe–Cr–B–Si alloys in the presence of Ni and Nb elements was the goal of this study. In this regard, four different amorphous–nanocrystalline Fe40Cr20Si15B15M10 (M=Fe, Nb, Ni, Ni0.5Nb0.5) alloys were prepared using mechanical alloying technique up to 20 h. Based on the achieved results, in contrast to Fe50Cr20Si15B15 alloy, the amorphous phase can be successfully prepared in the presence of Ni and Nb in composition. Although the crystallization mechanism of prepared amorphous phase in different alloys was the same, the Fe40Cr20Si15B15Nb10 alloy showed higher thermal stability in comparison with other samples. The crystallization activation energy of this amorphous alloy was estimated about 410 kJ mol?1 which was much higher than Fe40Cr20Si15B15Ni10 (195.5 kJ mol?1) and Fe40Cr20Si15B15Ni5Nb5 (360 kJ mol?1) samples. The calculated values of Avrami exponent (1.5 < n < 2.2) indicated that the crystallization process in different alloying systems is the same and to be governed by a three-dimensional diffusion-controlled growth.  相似文献   

10.
The isothermal section of the Nd–Al–Si ternary system at 500 °C has been investigated using differential thermal analysis, X-ray diffraction analysis, scanning electron microscopy and electron micro-probe analysis. Four ternary intermetallic compounds were confirmed: NdAl2Si21), hP5-CaLa2O2 structure type, Nd2Al3Si (τ2), hP3-AlB2 structure type, NdAl1−x Si1+x , 0.25 ≤ x ≤ 0.3 (τ3), tI12-αThSi2 structure type and Nd2Al1−x Si1+x , 0 ≤ x ≤ 0.2, (τ5), oS8-CrB structure type. A new ternary intermetallic phase (τ4) was found: Nd4Al3Si3, orthorhombic oS20, isotypic with Pr4Al3Ge3.  相似文献   

11.
Application of capillary electrophoresis (CE) as a high-resolution separation technique in metalloproteomics research is critically reviewed. The focus is on the requirements and challenges involved in coupling CE to sensitive element and molecule-specific detection techniques such as inductively coupled plasma mass spectrometry (ICP–MS) or electrospray ionisation mass spectrometry (ESI–MS). The complementary application of both detection techniques to the structural and functional characterisation of metal-binding proteins and their structural metal-binding moieties is emphasised. Beneficial aspects and limitations of mass spectrometry hyphenated to CE are discussed, on the basis of the literature published in this field over the last decade. Recent metalloproteomics applications of CE are reviewed to demonstrate its potential and limitations in modern biochemical speciation analysis and to indicate future directions of this technique.  相似文献   

12.
Journal of Radioanalytical and Nuclear Chemistry - The effect of minor substitution of carbon on the structure and magnetic properties of Fe–Si–B–Cu-type metallic glasses was...  相似文献   

13.
This study concerns new Si3N4–graphene composites manufactured using the hot-pressing method. Because of future applications of silicon nitride for cutting tools or specific parts of various devices having contact with high temperatures there is a need to find a ceramic composite material with good mechanical and especially thermal properties. Excellent thermal properties in the major directions are characteristic of graphene. In this study, the graphene phase is added to the silicon nitride phase in a quantity of up to 10 mass%, and the materials are sintered under uniaxial pressure. The mixture of AlN and Y2O3 is added as sintering activator to the composite matrix. The studies focus on thermal stability of produced composites in argon and air conditions up to the temperature of 1,000 °C. The research also concerns the influence of applied uniaxial pressure during the sintering process on the orientation of graphene nanoparticles in the Si3N4 matrix. The study also presents research on anisotropy of thermal diffusivity and following thermal conductivity of ceramic matrix composites versus the increasing graphene quantity. Most of the presented results have not been published in the literature yet.  相似文献   

14.
Russian Chemical Bulletin - Gold complexes [Ph3PR]+[Au(CN)2I2-trans]?, where R = Et (1), CH2Ph (2), Ph (3), were synthesized by the reaction of potassium dicyanodiiodoaurate with...  相似文献   

15.
The present study reports the synthesis, spectral characterization, self-assembly properties, and preliminary in vitro study of antioxidant capacity of two triple covalent hybrids consisting of fullerene C60, peptide, and steroidal moiety. Previously synthesized fulleropyrrolidinic acid and pregnenolone were connected by peptide linker using a multistep DCC/DMAP and/or EDC/HOBT esterification/amidation procedure. The hybrids were characterized by comparative analysis of spectroscopic data obtained from FTIR, UV–vis, HRMS, and extensive NMR experiments (1H, 13C, COSY, HSQC, and HMBC). The self-assembling properties and morphology of triads samples prepared by drop-drying method were examined by scanning electron microscopy (SEM). Preliminary in vitro antioxidant activity was studied by Ferrous ion Oxidation-Xylenol orange (FOX) method.  相似文献   

16.
17.
The process of deposition of the Re–Ni alloy, its current efficiency, and the alloy composition are studied as a function of the current density and the solution temperature. The hydrogen content in the deposits, their surface morphology, internal structure, and properties as the cathodic material for HER are examined. It is assumed that besides the high rhenium content, the high catalytic activity of nickel–rhenium alloys is associated with the high degree of their structural disordering.  相似文献   

18.
The electrodeposition, structure, and properties of Fe–W alloys are studied. Working current densitiesirange from 1 to 5 A dm–2at 50°C. The W content (45 wt %) barely depends oni. The current efficiency is about 40%. Alloys obtained at ibelow 2 A dm–2are crystalline oversaturated solid solutions of W in Fe and are magnetic. Higher current densities yield amorphous nonmagnetic alloys of the same composition. Either alloy has a very high resistivity (nearly 300 ohm cm) and, after a treatment at 500–600°C, transforms into a more equilibrium binary system comprising a saturated solid solution and an intermetallic compound.  相似文献   

19.
Melt-spun Al75?X Si25Ni X (X?=?2, 4, 7, and 10?mol%) alloys were investigated as anode materials for lithium-ion batteries. The Al68Si25Ni7 anode showed a maximum capacity of 840?mA?h?g?1 at the fifth cycle and maintained 661?mA?h?g?1 after 40 cycles with a high coulumbic efficiency of 93%. The specific capacity increased as the decrease in the Ni content during the first 20 cycles, but the cycle performance became poorer. For the Al65Si25Ni10 anode, the specific capacity increased slowly as the cycles increased and reached 370?mA?h?g?1 after 40 cycles. When the Al68Si25Ni7 ribbons were annealed, their initial capacity became higher, but much poorer cycle performance and low coulumbic efficiency occurred. Except Al65Si25Ni10, the AlLi compound could be detected in the anodes after lithiation. However, the capacity faded rapidly due to the formation of excessive AlLi in the Al73Si25Ni2 and annealed Al68Si25Ni7 anodes. The experiments revealed that the as-quenched ribbons consisted of the nanoscaled α-Al, metallic glass and α-Si, and their fractions were dependent on the Ni content. The α-Al was a supersaturated solid solution of Si and Ni in fcc-Al. For the as-quenched Al68Si25Ni7 ribbons, the α-Al grains were embedded in the amorphous matrix. It can be understood that metallic glass can store Li, and the supersaturated solid solution can store Li even more easily compared with other known Al–Si-based alloys. A conclusion can be drawn that the microstructure that the nanoscaled α-Al embedded in the metallic glass matrix is beneficial to improve the structure stability, restrain serious structural evolution, and limit the volume variation and pulverization during electrochemical cycles.  相似文献   

20.
Cu–Ag nanoparticles have been successfully synthesized by one-pot solvothermal treatment of a mixture of AgNO3 and Cu(OAc)2·H2O in ethylene glycol solution at 180 °C for 10 h. The samples were characterized by UV–visible absorption, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectroscopy, transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The results showed that Cu–Ag nanoparticles and a small amount of phase-separated Cu–Ag alloy nanoparticles with an average diameter of 100 ± 30 nm were synthesized by the solvothermal treatment procedure. The mechanism of formation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号