首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advantages of using diodes as thermal sensors in solution thermochemistry are discussed and a simple, low-cost circuit for the use of diodes as temperature sensors is reported. In preliminary studies, the titration of TRIS and hydrochloric acid is used to compare the precision of thermistors and diodes in thermometric titrimetry. Several systems are assayed at various temperatures by enthalpimetric methods to illustrate the advantages of diodes as sensors for monitoring thermal methods capable of being used in quality control system.  相似文献   

2.
[structure: see text] The synthesis and UV-vis and NMR spectroscopic studies of thiourea-based colorimetric sensors for anions are presented. These sensors can recognize anions through hydrogen binding even in competitive pH-buffered aqueous solutions, giving rise to large color changes that are clearly visible to the naked eye.  相似文献   

3.
刘太宏  房喻 《应用化学》2018,35(9):1133-1137
薄膜基荧光传感因灵敏度高、可采集信号丰富、实时检测性好和易于器件化等优点备受人们关注,特别是随着微纳米加工、集成制造和物联网技术的发展应用,薄膜基荧光传感器研究已经成为传感器研究的一个重要领域,呈现出广阔的发展前景。 结合课题组工作,本文简要讨论了基于小分子化合物的薄膜基荧光气体传感器在隐藏爆炸物、毒品、挥发性有机污染物检测/监测,重大疾病早期诊断等领域的应用探索。 在此基础上,指出了薄膜基荧光传感器发展面临的问题,评述了薄膜基荧光传感器研究和应用的前景。  相似文献   

4.
在制成钠基蒙脱土的基础上 ,对蒙脱土进行了改性 ,并把改性后的蒙脱土分散在N ,N 二乙基丙烯酰胺水溶液中进行聚合 .结果表明这种蒙脱土插层聚合的水凝胶的低温溶胀性能大大提高 ,其对水的释放曲线在特定的温度下也由S形转变为近一直线形 .由于蒙脱土的改性 ,在蒙脱土和聚合物之间的界面化学发生了改变 ,用X衍射分析表明此水凝胶是纳米复合材料 .而加入蒙脱土量达 10 %的水凝胶的溶胀比和温度响应性能也都发生很大改善 .  相似文献   

5.
光学薄膜氧气传感器研究进展   总被引:2,自引:0,他引:2  
光学薄膜氧气传感器具有检测精度高、选择性好、抗干扰能力强等优点,近年来日益得到人们的广泛重视,研究工作也在不断深化和拓展,展现出十分广阔的应用前景。本文按光学薄膜氧气传感器的制备方法分类扼要综述了光学薄膜氧气传感器的研究现状,并展望了其研究前景。  相似文献   

6.
The design and synthesis of two novel quinoxalinophenanthrophenazine-based anion sensors are reported. Binding studies of these sensors with an array of mono- and polyatomic anions using UV-vis, fluorescence, and NMR titrations have shown 1:1 and 1:2 sensor-to-anion ratios. Binding constants were calculated for anions, which exhibited high affinity for the sensors, including acetate, benzoate, cyanide, and fluoride ions.  相似文献   

7.
Optical oxygen sensing is of broad interest in many areas of research, such as medicine, food processing, and micro‐ and marine biology. The operation principle of optical oxygen sensors is well established and these sensors are routinely employed in lab and field experiments. Ultratrace oxygen sensors, which enable measurements in the sub‐nanomolar region (dissolved oxygen), are becoming increasingly important. Such sensors prominently exhibit phenomena that complicate calibration and measurements. However, these phenomena are not constrained to ultratrace sensors; rather, these effects are inherent to the way optical oxygen sensors work and may influence any optical oxygen measurement when certain conditions are met. This scenario is especially true for applications that deal with high‐excitation light intensities, such as microscopy and microfluidic applications. Herein, we present various effects that we could observe in our studies with ultratrace oxygen sensors and discuss the reasons for their appearance, the mechanism by which they influence measurements, and how to best reduce their impact. The phenomena discussed are oxygen photoconsumption in the sensor material; depletion of the dye ground state by high‐excitation photon‐flux values, which can compromise both intensity and ratiometric‐based measurements; triplet–triplet annihilation; and singlet‐oxygen accumulation, which affects measurements at very low oxygen concentrations.  相似文献   

8.
Mycotoxins pose a grave global threat to human life and health by contaminating food and feed and cause enormous losses in healthcare and trading. Trace mycotoxin concentrations and diverse matrices in food make identification and measurement challenges, necessitating highly specific and sensitive detection methods. Electrochemical (EC) sensors are characterized by simple operation, outstanding sensitivity, low cost, and facile miniaturization and have become a promising strategy for addressing specificity and sensitivity in detection. Recent studies on EC sensors for mycotoxin detection for food safety are reviewed here. First, we summarize the fabrication of EC sensors and techniques with enhanced specificity and sensitivity. Then, we review state-of-the-art EC sensors for detecting major mycotoxins. Challenges and opportunities for this technology are further discussed. Finally, in-depth information is provided on using EC sensors to detect mycotoxins for food safety, as well as the development of EC sensors for academic study and practical application.  相似文献   

9.
Nanomaterials have gained considerable attention over the last decade, finding applications in emerging fields such as wearable sensors, biomedical care, and implantable electronics. However, these applications require miniaturization operating with extremely low power levels to conveniently sense various signals anytime, anywhere, and show the information in various ways. From this perspective, a crucial field is technologies that can harvest energy from the environment as sustainable, self-sufficient, self-powered sensors. Here we revisit recent advances in various self-powered sensors: optical, chemical, biological, medical, and gas. A timely overview is provided of unconventional nanomaterial sensors operated by self-sufficient energy, focusing on the energy source classification and comparisons of studies including self-powered photovoltaic, piezoelectric, triboelectric, and thermoelectric technology. Integration of these self-operating systems and new applications for neuromorphic sensors are also reviewed. Furthermore, this review discusses opportunities and challenges from self-powered nanomaterial sensors with respect to their energy harvesting principles and sensing applications.  相似文献   

10.
Dai N  Kool ET 《Chemical Society reviews》2011,40(12):5756-5770
Fluorescent sensors that make use of DNA structures have become widely useful in monitoring enzymatic activities. Early studies focused primarily on enzymes that naturally use DNA or RNA as the substrate. However, recent advances in molecular design have enabled the development of nucleic acid sensors for a wider range of functions, including enzymes that do not normally bind DNA or RNA. Nucleic acid sensors present some potential advantages over classical small-molecule sensors, including water solubility and ease of synthesis. An overview of the multiple strategies under recent development is presented in this critical review, and expected future developments in microarrays, single molecule analysis, and in vivo sensing are discussed (160 references).  相似文献   

11.
Luminescence-based optical sensors are becoming increasingly important particularly in the area of fibber optic sensors. Most luminescence sensors detect analyses based on the change in luminescent intensity or excited-state lifetime of the sensing material as a function of analyst concentration. Luminescent materials with long excited-state lifetime are essential for the development of inexpensive sensors because it is much simpler and less expensive to measure lifetime in microseconds than in nanoseconds. Luminescent dyes with absorption in the visible region would allow the use of inexpensive light sources such as light emitting diodes (LEDs). Recent studies indicate that luminescent transition metal complexes, especially those with platinum group metals, have desirable spectral characteristics and features including long excited state lifetimes, high luminescence quantum yields and intense visible absorptions. They also tend to be thermally, chemically and photochemically robust. We have been investigating new luminescent sensor materials with the aims to understand the behaviour of luminescent materials in polymer and gel support and to develop new sensor materials with desirable properties.  相似文献   

12.
The widespread use of miniaturized chemical sensors to monitor clinically important analytes such as PO2, PCO2, pH, electrolytes, glucose and lactate in a continuous, real-time manner has been seriously hindered by the erratic analytical results often obtained when such devices are implanted in vivo. One major factor that has influenced the analytical performance of indwelling sensors is the biological response they elicit when in contact with blood or tissue (e.g. thrombus formation on the device surface, inflammatory response, encapsulation, etc.). Nitric oxide (NO) has been shown to be a potent inhibitor of platelet adhesion and activation as well as a promoter of wound healing in tissue. Herein, we review recent work aimed at the development of hydrophobic NO-releasing polymers that can be employed to coat catheter-type amperometric oxygen sensors without interfering with the analytical performance of these devices. Such modified sensors are shown to exhibit greatly enhanced hemocompatibility and improved analytical performance when implanted within porcine carotid and femoral arteries for up to 16 h. Further, results from preliminary studies also demonstrate that prototype fluorescent oxygen sensors, catheter-style potentiometric carbon dioxide sensors and subcutaneous needle-type enzyme-based amperometric glucose sensors can also be fabricated with new NO-release outer coatings without compromising the analytical response characteristics of these devices. The NO-release strategy may provide a solution to the lingering biocompatibility problems encountered when miniature chemical sensors are implanted in vivo.  相似文献   

13.
《Analytical letters》2012,45(7):1144-1157
Abstract

The fabrication and analytical applications of two types of potentiometric sensors for the determination of ketoconazole (KET) are described. The sensors are based on the use of KET-molybdophosphoric acid (MPA) ion pair as electroactive material. The fabricated sensors include both polymer membrane and carbon paste electrodes. Both sensors showed a linear, stable and near Nernstian slope of 57.8 mV/decade and 55.2 mV/decade for PVC membrane and carbon paste sensors respectively over a relatively wide range of KET concentration (1 × 10?2 ? 5 × 10?5and 1 × 10?2 ? 1 × 10?6). The sensors showed a fast response time of < 30 sec and < 45 sec. A useful pH range of 3–6 was obtained for both types of sensors. A detection limit of 2.96 × 10?5M was obtained for PVC membrane sensor and 6.91 × 10?6 M was obtained for carbon paste sensor. The proposed sensors proved to have a good selectivity for KET with respect to a large number of ions. The proposed sensors were successfully applied for the determination of KET in pharmaceutical formulations. The results obtained are in good agreement with the values obtained by the standard method.  相似文献   

14.
The synthesis and binding investigation of novel crown-ether derivatives of phenanthro[4,5-abc]phenazine and quinoxalino[2′,3′:9,10]phenanthro[4,5-abc]phenazine sensors are reported. The binding studies of these sensors with an array of alkali and alkaline-earth metals are exploited using UV–vis, fluorescence and nuclear magnetic resonance spectroscopies.  相似文献   

15.
A common problem in detecting metal ions with fluorescentchemosensors is the emission-suppressing effects of fluorescence-quenching metal ions. This quenching tendency makes it difficult to design sensors with turn-on signal, and differentiate between several metal ions that may yield a strong quenching response. To address these challenges, we investigate a new sensor design strategy, incorporating fluorophores and metal ligands as DNA base replacements in DNA-like oligomers, for generating a broader range of responses for quenching metal ions. The modular molecular design enabled rapid synthesis and discovery of sensors from libraries on PEG-polystyrene beads. Using this approach, water-soluble sensors 1-5 were identified as strong responders to a set of eight typically quenching metal ions (Co(2+), Ni(2+), Cu(2+), Hg(2+), Pb(2+), Ag(+), Cr(3+), and Fe(3+)). They were synthesized and characterized for sensing responses in solution. Cross-screening with the full set of metal ions showed that they have a wide variety of responses, including emission enhancements and red- and blue-shifts. The diversity of sensor responses allows as few as two sensors (1 and 2) to be used together to successfully differentiate these eight metals. As a test, a set of unknown metal ion solutions in blind studies were also successfully identified based on the response pattern of the sensors. The modular nature of the sensor design strategy suggests a broadly applicable approach to finding sensors for differentiating many different cations by pattern-based recognition, simply by varying the sequence and composition of ligands and fluorophores on a DNA synthesizer.  相似文献   

16.
We review the state-of-the-art application of nanoparticles (NPs) in electrochemical analysis of environmental pollutants. We summarize methods for preparing NPs and modifying electrode surfaces with NPs. We describe several examples of applications in environmental electrochemical sensors and performance in terms of sensitivity and selectivity for both metal and metal-oxide NPs. We present recent trends in the beneficial use of NPs in constructing electrochemical sensors for environmental monitoring and discuss future challenges.NPs have promising potential to increase competitiveness of electrochemical sensors in environmental monitoring, though research has focused mainly on development of methodology for fabricating new sensors, and the number of studies for optimizing the performance of sensors and the applicability to real samples is still limited.  相似文献   

17.
Russian Chemical Bulletin - Various strategies for producing lanthanide-containing luminescent sensors, which were used mainly in the studies of 2015–2021, are considered. The review is...  相似文献   

18.
We adopted simple synthetic strategy to synthesize mono-functionalized thiasapphyrins containing functionalized aryl group in the meso-position at thiophene side. The thiasapphyrin building block containing iodophenyl functional group was coupled with three different porphyrin building blocks with N4, N3S and N2S2 cores containing meso-ethynylphenyl functional group under mild Pd(0) coupling conditions to synthesize three covalently linked diphenyl ethyne bridged porphyrin–thiasapphyrin dyads. The porphyrin–thiasapphyrin dyads were characterized by mass, NMR, absorption, electrochemical and fluorescence techniques. The NMR, absorption and electrochemical studies indicated that the two components in dyads interact weakly and retain their individual identities. The steady state fluorescence studies indicated that the porphyrin fluorescence is reduced to a significant extent because of energy and/or electron transfer to the thiasapphyrin unit. The protonation studies indicated that N4 porphyrin unit is more basic, whereas N3S and N2S2 porphyrin units are less basic compared to thiasapphyrin unit in respective dyads. We explored the potential of dyads as fluorescent anion sensors and showed that two out of three dyads can be used as fluorescent anion sensors.  相似文献   

19.
适配体是一小段经体外筛选得到的寡核苷酸序列。适配体中的胸腺嘧啶(T)碱基可与Hg~(2+)形成比双链DNA更加稳定的T-Hg~(2+)-T结构。利用该性质结合电化学测量方法可制作检测Hg~(2+)的特异性强、灵敏度高的适配体电化学传感器,并建立微量Hg~(2+)的检测方法。该文对近年来发展的检测Hg~(2+)的适配体电化学传感器进行了综述和总结,对文献报道的几类传感器的构建过程和检测机理进行了详述,对检测方法的优缺点进行了分析。最后,对此类传感器今后的发展方向提出了展望,引用文献83篇。  相似文献   

20.
Typically, NAD(P)H-sensitive culture probes have been used to estimate biomass concentrations in suspended-cell cultivations, but these sensors have other uses as well. A number of applications, ranging from biosensors to immobilized-cell metabolic studies, are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号