首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Gallium Fluoride Ammine Complexes: Ga(NH3)F3 and Ga(NH3)2F3 Two gallium trifluoride ammines, Ga(NH3)F3 and Ga(NH3)2F3, are obtained as single crystals through oxidation of gallium metal with NH4HF2 (Ga : NH4HF2 = 1 : 1.5) and NH4F (Ga : NH4F = 1 : 3.5), respectively, at 450 °C and 400 °C. Ga(NH3)F3 crystallizes with the non-centrosymmetric space group Abm2 (a = b = 544.6(2) pm, c = 986.6(4) pm) forming two-dimensional layers of [Ga(NH3)F5] octahedra. The addition of another NH3 molecule in Ga(NH3)2F3 (orthorhombic, Immm, a = 700.0(3) pm, b = 724.7(2) pm, c = 393.1(1) pm) leads to one-dimensional rods of [Ga(NH3)2F4] octahedra running parallel [001] which are stacked in the [010] direction. Infrared spectra suggest hydrogen bonding (N–H…F) in Ga(NH3)F3, for Ga(NH3)2F3 an unequivocal statement is not possible.  相似文献   

2.
Ni(NH3)Cl2 and Ni(NH3)Br2 were prepared by the reaction of Ni(NH3)2X2 with NiX2 at 350 °C in a steel autoclave. The crystal structures were determined by X‐ray powder diffraction using synchrotron radiation and refined by Rietveld methods. Ni(NH3)Cl2 and Ni(NH3)Br2 are isotypic and crystallize in the space group I2/m with Z = 8 and for Ni(NH3)Cl2: a = 14.8976(3) Å, b = 3.56251(6) Å, c = 13.9229(3) Å, β = 106.301(1)°; Ni(NH3)Br2a = 15.5764(1) Å, b = 3.74346(3) Å, c = 14.4224(1) Å, β = 105.894(1)°. The crystal structures are built up by two crystallographically distinct but chemically mostly equivalent polymeric octahedra double chains [NiX3/3X2/2(NH3)] (X = Cl, Br) running along the short b‐axis. The octahedra NiX5NH3 share common edges therein. The crystal structures of the ammines Ni(NH3)mX2 with m = 1, 2, 6 can be derived from that of the halides NiX2 (X = Cl, Br) by successive fragmentation of its CdCl2 like layers by NH3.  相似文献   

3.
Two New Ammoniates of Scandium Trichloride, ScCl3(NH3) and ScCl3(NH3)2 Reactions of scandium with ammonium chloride in the presence of cupric chloride in sealed copper ampoules yield colorless single crystals of the two new ammoniates of scandium trichloride, ScCl3(NH3) und ScCl3(NH3)2. The crystal structures were determined from single crystal data; they both crystallize with the triclinic crystal system. In ScCl3(NH3)2 isolated unsymmetrical dimers of double octahedra, according to [Sc‐mer‐(NH3)3/1Cl1/1Cl(2/2)×2Sc(NH3)1/1Cl3/1] are the characteristic structural features. The crystal structure of ScCl3(NH3) also contains double octahedra, [Sc(NH3)2/1Cl2/1Cl2/2]2; these dimers are, however, connected via common edges forming infinite zig‐zag chains according to the formulation [Sc(NH3)1/1Cl1/1Cl4/2].  相似文献   

4.
《Solid State Sciences》2004,6(4):367-370
Calorimetric and X-ray measurements have been performed on ammonium oxyfluorides (NH4)3WO3F3 and (NH4)3TiOF5 from 120 up to 300 K. Two and one structural phase transitions were found for the former and latter compounds, respectively. In accordance with the entropy parameters both compounds undergo phase transitions of order–disorder type.  相似文献   

5.
The electronic structure and spectra of [Ru(NH3)5pyz]2+ and [(NH3)5Ru-pyz-Ru(NH3)5]4+ are calculated by the INDO (CINDO-E/S) method. Changes in molecular orbitals, charge distributions, and bond order indices of the pyrazine molecule and [Ru(NH3)5pyz]2+ complex in the [(NH3)5Ru-pyz-Ru(NH3)5]4+ binuclear complex are analyzed. St. Petersburg State University. Translated fromZhurnal Strukturnoi Khimii, Vol. 35, No. 4, pp. 12–23, July–August, 1994. Translated by. O. Kharlamova  相似文献   

6.
The Structures of some Hexaammine Metal(II) Halides of 3 d Metals: [V(NH3)6]I2, [Cr(NH3)6]I2, [Mn(NH3)6]Cl2, [Fe(NH3)6]Cl2, [Fe(NH3)6]Br2, [Co(NH3)6]Br2 and [Ni(NH3)6]Cl2 Crystals of yellow [V(NH3)6]I2 and green [Cr(NH3)6]I2 were obtained by the reaction of VI2 and CrI2 with liquid ammonia at room temperature. Colourless crystals of [Mn(NH3)6]Cl2 were obtained from Mn and NH4Cl in supercritical ammonia. Colourless transparent crystals of [Fe(NH3)6]Cl2 and [Fe(NH3)6]Br2 were obtained by the reaction of FeCl2 and FeBr2 with supercritical ammonia at 400°C. Under the same conditions orange crystals of [Co(NH3)6]Br2 were obtained from [Co2(NH2)3(NH3)6]Br3. Purple crystals of [Ni(NH3)6]Cl2 were obtained by the reaction of NiCl2 · 6H2O and NH4Cl with aqueous NH3 solution. The structures of the isotypic compounds (Fm3 m, Z = 4) were determined from single crystal diffractometer data (see “Inhaltsübersicht”). All compounds crystallize in the K2[PtCl6] structure type. In these compounds the metal ions have high-spin configuration. The orientation of the dynamically disordered hydrogen atoms of the ammonia ligands is discussed.  相似文献   

7.
Ammonium oxofluorotungstates, (NH4)2WO2F4 and (NH4)3WO3F3, are characterized by vibration spectroscopy and quantum chemistry methods with the use of NMR 19F and 1H data. It is shown in the approximation of the density-functional theory that in isolated octahedrons [WO2F4]2? and [WO3F3]3? the mutual arrangement of oxygen atoms in cis-position corresponds to the energy minimum. The presence of intraspheric disorder in [WO3F3]3? (unlike [WO2F4]2?) explains the complex character of vibrational spectra of this anion and eliminates existent in the literature differences in their interpretation (between C 2v and C 3v structure variants). Models of intraspheric dynamics of [WO3F3]3? are discussed.  相似文献   

8.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

9.
The preparation of trans-[Co(NH3)4(CH3NH2)Br]2+ and trans-[Co(NH3)4(CH3NH2)-(NO3)]2+ complexes is described. The UV-VIS spectra of the complexes indicate a decrease of the ligand field compared to the parent pentaammines. Infrared spectra match with the pattern of the corresponding pentaammines. The catalyzed (by Hg2+) aquation of the trans-bromomethylamine complex go under retention of the stereochemical configuration. The base hydrolysis (studied at 25°C) products show trans to cis rearrangement for both complexes. 1H NMR spectroscopy is used for identification of the stereochemical configuration of the compounds.  相似文献   

10.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

11.
[Cu(NH3)2](NO3)2 ( I ) and [Cu(NH3](NO3)2 ( II ) were synthesized by interaction of molten NH4NO3 with [Cu(NH3)4](NO3)2 and Cu(NO3)2 · 3 H2O, respectively, at 180 to 195°C for 24 hr. According to X-Ray single crystal analysis, I is orthorhombic (sp. gr. Pbca) with a = 5.678(1), b = 9.765(2), c = 11.596(2) Å, Z = 4, R = 0.060; II is monoclinic (sp. gr. P21/c) with a = 6.670(1), b = 8.658(2), c = 9.661(2) Å, β = 101.78(2)°, Z = 4, R = 0.027. In both structures, the nearest coordination environment of Cu is a slightly distorted square formed by N (from NH3) and O atoms (from NO3 groups). The structure of I consists of centrosymmetrical [Cu(NH3)2](NO3)2 molecules linked by hydrogen bonds. The Cu? N and Cu? O distances are 1.98 and 2.01 Å, respectively. In II , the Cu? N distance is 1.95 Å, the Cu? O distances are 1.96, 2.02, and 2.03 Å. The [CuO3NH3] squares are connected by NO3 bridges into zigzag chains, which are linked into layers by longer Cu? O interactions (2.31 Å). Obviously, the layers are additionally strengthened and held together by hydrogen bonds.  相似文献   

12.
Green single crystals of trans‐tetraamminedibromidochromium(III) trans‐diamminetetrabromidochromate(III), [CrBr2(NH3)4][CrBr4(NH3)2], are found to contain two symmetry‐independent sixfold coordinated CrIII cations on centres of inversion. The structure is composed of octahedral trans‐[CrBr2(NH3)4]+ cations and octahedral trans‐[CrBr4(NH3)2] anions, and adopts a distorted CsCl‐type lattice. The cations and anions are linked by N—H...Br interactions. This is the first example in which both ions are mixed ammine–bromide CrIII complexes.  相似文献   

13.
New Hexafluoromanganates(III): (NH4)2NaMnF6, (NH4)2KMnF6, and (NH4)3MnF6 (NH4)2NaMnF6 and (NH4)2KMnF6 were prepared by solid state reaction in sealed platinum tubes under pressure. From solution pure (NH4)3MnF6 has been obtained at first time. The compounds crystallize in three different variants of the elpasolite structure: (NH4)2NaMnF6 tetragonally, (NH4)3KMnF6 monoclinic, (NH4)3MnF6 monoclinic, perhaps with triclinic symmetry. Relations between decreasing symmetry in structure and the JAHN -TELLER effect of Mn(III) as well as the influence of ionic radii are discussed. The reflectance spectra were measured, the magnetic properties of the title compounds as well as (NH4)2MnF5 were investigated.  相似文献   

14.
Preparation and Electronic Spectra of new Trithiocarbonato Complexes; Structure, Properties, and Photoelectronic Spectra of Ni(NH3)3CS3 and Zn(NH3)2CS3 The complex anions [Zn(CS3)2]2?, [Cd(CS3)2]2?, [Co(CS3)3]3?, [Cr(CS3)3]3?, [As(CS3)3]3?, [Sb(CS3)3]3?, [Bi(CS3)3]3?, [Sn(CS3)2]2?, and [Cu(CS3)] could be isolated as tetraphenylphosphonium and tetraphenylarsonium salts. From the electronic spectra of the transition metal complexes it follows that the CS ion exhibits, in comparison with other sulfur containing ligands, relatively large Δ-values and only a small nephelauxetic effect (e.g. in [Cr(CS3)3]3?: Δ = 16.0 kK; β35 = 0.57). The trithiocarbonate ion in all the above complexes acts as a bidentate ligand and forms fourmembered ring systems CS2M. Further it was proved by means of infrared, electronic and photoelectronic spectra that the structure of “Ni(NH3)3CS3” is [Ni(NH3)6][Ni(CS3)2] whereas Zn(NH3)2CS3 has not such an ionic structure.  相似文献   

15.
The crystal structures have been determined of CH3NH3HgCl3, (CH3NH3)2HgCl4, and CH3NH3Hg2Cl5. In (CH3NH3)2HgCl4 the HgII atom is tetrahedrally coordinated by four Cl atoms with Hg? Cl bond lengths of 2.464 to 2.478 Å. In the other two compounds the HgII atom is involved in two short covalent Hg? Cl bonds, forming a pseudo HgCl2 molecule and two much longer bridging Hg? Cl bonds. The methylammonium groups are connected by hydrogen bonds to the chlorine atoms. The nature of the hydrogen bonding scheme probably causes disorder of the methylammonium groups.  相似文献   

16.
Sulphito Cobalt(III) Ammines. II. [CoSO3NCS(NH3)4] and [CoSO3SCN(NH3)4] The brown complex [CoSO3NCS(NH3)4] · 2 H2O formed from aqueous solutions contains N-bonded thiocyanate as concluded from his IR spectrum. After dehydration the red complex [CoSO3SCN(NH3)4] containing S-bonded thiocyanate has been formed. The conversion of the two isomers is favoured by the trans effect of the sulphito group.  相似文献   

17.
The IR and Raman spectra and the thermal behaviour of the isomorphous compounds (NH4)3Ga(C2O4)3·3H2O and (NH4)3Al(C2O4)3·3H2O were investigated. Detailed stoichiometries, sustained by TG, DTA and IR spectroscopic analyses, were found in both cases. Different results, associated with the different polarizing powers of the metal cations, were obtained. The first evidence was found of the formation of basic gallium carbonates.  相似文献   

18.
Preparation and Crystal Structure of Diammin Magnesium Diazide Mg(NH3)2(N3)2 Diammin magnesium diazide was synthesized from Mg3N2 and NH4N3 in liquid ammonia and crystallized at 150 °C under autogenous atmosphere of HN3 and NH3 using sealed ampoules. Mg(NH3)2(N3)2 is a colorless, microcrystalline powder which can detonate above 180 °C. Caution, preparation and manipulation of Mg(NH3)2(N3)2 is very dangerous! The crystal structure was solved from powder data using the Patterson method and a Rietveld refinement was performed (Mg(NH3)2(N3)2, I 4/m, no. 87; a = 6.3519(1), c = 7.9176(2) Å; Z = 2, R(F2)= 0.1162). The crystal structure of Mg(NH3)2(N3)2 is related to that of SnF4. It consists of planes built up from corner sharing Mg(NH3)2(N3)4 octahedra connected equatorially over their four azide bridges with the ammonia ligands being in trans position. IR data were collected and interpreted in accordance with the structural data.  相似文献   

19.
Normal Coordinate Analysis of (CH3)2SO2, (CH3)2SO(NH), and (CH3)2S(NH)2 using the Method of Stepwise Coupling The qualitative assignment of the vibrational spectra of (CH3)2SO2 ( 1 ), (CH3)2SO(NH) ( 2 a ), and (CH3)2S(NH)2 ( 3 a ) and of the C and N deuterated derivatives of 2 a and 3 a is used in a normal coordinate analysis by the method of stepwise coupling. The force constants and the energy distributions are calculated in symmetry coordinates using a generalized valence force field.  相似文献   

20.
Synthesis and Crystal Structure of Ammonium Tetraamminelithium Amidotrithiophosphate‐Ammonia(1/1)(NH4)[Li(NH3)4][P(NH2)S3]·NH3 Colourless crystals of (NH4)[Li(NH3)4][P(NH2)S3]·NH3 were prepared by the reduction of P4S10 with a solution of lithium in liquid ammonia. The X‐ray structure determination shows them to contain the pseudo‐tetrahedral amidotrithiophosphate anion [P(NH2)S3]2− (point group CS), which is the hitherto unknown final member of a series of previously characterized amidothiophosphates. The ammonium ion and the ammonia molecule of solvation form an diamminehydrogen(1+)‐ion N2H7+ with a short, nearly linear hydrogen bond of 2.864(3) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号