首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study a current shot noise in a macroscopic insulator based on a two-dimensional electron system in GaAs in a variable range hopping (VRH) regime. At low temperature and in a sufficiently depleted sample a shot noise close to a full Poissonian value is measured. This suggests an observation of a finite-size effect in shot noise in the VRH conduction and demonstrates a possibility of accurate quasiparticle charge measurements in the insulating regime.  相似文献   

2.
The low-temperature conductivity of uncompensated insulating Si:P with P concentration just below the metal-insulator (MI) transition shows with decreasingN a crossover from Mott variable range hopping (VRH) to Efros-Shklovskii VRH. From the concentration dependence of the Mott temperatureT M a correlation-length exponent ν=1.1 is obtained which is compatible with the conductivity exponent μ=1.3 for metallic samples.  相似文献   

3.
ac Conductivity measurements are carried out across the metal to insulator transition in NiAl0.7Cr0.7Fe0.6O4. The low frequency data is analyzed using Summerfield scaling theory for hopping conductivity. The exponent of the scaling behavior has significantly different values in the conducting and insulating regimes. The hopping frequency and the zero frequency conductivity are found to increase with temperature, slowly in the metallic regime and rapidly in the insulating regime.  相似文献   

4.
The evolution of the ground state properties of FeSb(2) has been investigated via temperature (4.2-300 K), magnetic field (0-12 T) and pressure (0-8.8 GPa) dependent electrical resistivity studies. The temperature dependence of the resistivity follows activated behavior in the high temperature (HT) regime (T > 60 K), while variable range hopping (VRH) dictates the transport in the intermediate temperature (IT) regime (10 K > T > 45 K) and power law behavior is observed in the low temperature (LT) regime (T < 10 K). The pressure profoundly affects the resistivity in all the temperature regimes. The energy gap (Δ) extracted in the HT regime initially increases with pressure and then decreases, while the VRH parameter T(0) deduced in the IT regime is seen to decrease monotonically and vanish beyond 5 GPa leading to an insulator to metal transition (MIT) on account of delocalization of the electronic states in the gap. The analysis of the logarithmic derivative of the conductivity indicates the MIT to occur at ~6 GPa. The magnetoresistivity is found to be positive. The analysis of the resistivity behavior under pressure and magnetic field indicates that the former induces delocalization, while the latter tends to assist localization of the defect states inside the gap of FeSb(2).  相似文献   

5.
Experimental data for the conductivity of type IIa diamond specimens implanted at low temperatures with carbon ions, followed by high temperature annealing, have been analyzed using hopping and percolation theories in the vicinity of the insulator-metal transition. Near the transition it appears that conductivity occurs viasp 2-bonded graphitic clusters which are randomly distributed in thesp 3-bonded diamond matrix. A conductivity crossover between the Mott and Efros-Shklovskii VRH laws has been observed on the insulating side of the transition.  相似文献   

6.
Scanning electron microscopy (SEM), X- ray diffraction (XRD), density (d), oxygen molar volume (Vm) and dc conductivity of different compositions of calcium vanadate glasses are reported. SEM exhibits a surface without any presence of a microstructure which is a characteristic of the amorphous phase. The overall features of these XRD curves confirm the amorphous nature of the present glasses. Density was observed to decrease with an increase in V2O5 content. The experimental results were analyzed with reference to theoretical models existing in the literature. It has been observed that the high-temperature conductivity data are consistent with Mott's nearest-neighbor hopping model. However, both Mott variable-range hopping (VRH) and Greaves intermediate range hopping models are found to be applicable. The hopping at high temperatures in the calcium vanadate glasses occurs by non-adiabatic process in contrast to the vanadate glasses formed with conventional network formers. The hopping model of Schnakenberg can predict the temperature dependence of the conductivity data. The percolation model of Triberis and Friedman applied to the small polaron hopping (SPH) regime is also consistent with data. The various model parameters such as density of states, hopping energy, etc., obtained from the best fits were found to be consistent with the glass compositions.  相似文献   

7.
The density of states (DOS) in the vicinity of the Fermi level controls all transport phenomena at low temperatures near the metal-insulator transition (MIT). The well-known method for DOS-determination on the metallic side of the MIT, the so-called “tunneling spectroscopy”, is inapplicable on the insulating side because of the high sample resistance at low temperatures. In this work a new method for DOS-determination on the insulating side is presented. The method is based on the measurements of variable range hopping (VRH) resistance in magnetic fields. By analogy this method can be called “hopping spectroscopy”.  相似文献   

8.
We have conducted temperature and frequency dependent transport measurements in amorphous NbxSi1-x samples in the insulating regime. We find a temperature dependent dc conductivity consistent with variable range hopping in a Coulomb glass. The frequency dependent response in the millimeter-wave frequency range can be described by the expression sigma(omega) varies with (-iota omega)(alpha) with the exponent somewhat smaller than 1. Our ac results are not consistent with extant theories for the hopping transport.  相似文献   

9.
The dc conductivity of VN–PbO–TeO2 glasses with different mole percentages of VN, PbO and TeO2 has been measured in the temperature range 125–450?K. The conductivity of the glasses increases with increasing VN content for a fixed mole percentage of PbO. Neither Mott's variable-range hopping (VRH) model at low temperatures (TD/4, where ΘD is the Debye temperature) nor Greaves’ VRH model at intermediate temperatures (ΘD/?4<TD/2) describe the dc conductivity data for these glasses. Multiphonon tunnelling transport of strongly coupled electrons is also unable to account for the carrier transport. However, at high temperatures (T?>?ΘD/2), conduction is shown to be due to small-polaron hopping in the non-adiabatic regime. Alteration of the VN content causes a change in the model parameters achieved from best-fitting curves for the glasses. Modulated differential scanning calorimetry analysis shows that the glass transition temperatures T g in this system vary from 269 to 302°C.  相似文献   

10.
The temperature dependent Hall effect and resistivity measurements of Si δ-doped GaAs are performed in a temperature range of 25–300 K. The temperature dependence of carrier concentration shows a characteristic minimum at about 200 K, which indicates a transition from the conduction band conduction to the impurity band conduction. The temperature dependence of the conductivity results are in agreement with terms due to conduction band conduction and localized state hopping conduction in the impurity band. It is found that the transport properties of Si δ-doped GaAs are mainly governed by the dislocation scattering mechanism at high temperatures. On the other hand, the conductivity follows the Mott variable range hopping conduction (VRH) at low temperatures in the studied structures.  相似文献   

11.
We have studied the effects of superconducting grain boundary disorder on the normal state transport properties of cuprate films. Dip-coated granular YBa2Cu3O7−y (YBaCuO) thick films on polycrystalline MgO substrates were synthesized and networked grains were systematically made less disordered in order to probe the crossover from strong to weak inter-grain disorder. Grain boundary passivation was achieved by metallic inclusions of different forms. We have shown that the normal state of samples exhibit a semiconducting behavior and changes to ‘metallic’ with sharper transitions to the superconducting state as we reduce grain-interfaces disorder, i.e. increase metallic inclusion content. On the basis of electron localization mechanisms, the normal state conductivity is thus shown to undergo a dimensional crossover from 3D to 2D in the frame of the variable-range hopping (VRH) regime. The transition threshold was found to depend on the form of metallic inclusions.  相似文献   

12.
We review and compare two models recently used to describe electronic transport in polymer fibers/nanotubes and carbon nanotubes including graphene nanoribbons, namely, variable range hopping (VRH) in different versions and their modifications on the one hand and electric-field-induced phonon-assisted tunneling (PhAT) on the other hand. The VRH model is mainly approved on behalf of the results of temperature dependences. However, the field dependencies of the conductivity in the framework of this model remain practically unexplained. At the same time, the PhAT model describes properly not only temperature dependence of conductivity measured in a wide temperature range, but also conductivity/current dependences on field strength using the same set of parameters characterizing the materials  相似文献   

13.
The existence of conducting islands in polyaniline films has long been proposed in the literature, which would be consistent with conducting mechanisms based on hopping. Obtaining direct evidence of conducting islands, however, is not straightforward. In this paper, conducting islands were visualized in poly(o-ethoxyaniline) (POEA) films prepared at low pH, using Transmission Electron Microscopy (TEM) and atomic force spectroscopy (AFS). The size of the islands varied between 67 and 470 Å for a pH=3.0, with a larger average being obtained with AFS, probably due to the finite size effect of the atomic force microscopy tip. In AFS, the conducting islands were denoted by regions with repulsive forces due to the double-layer forces. On the basis of X-ray diffraction (XRD) patterns for POEA in the powder form, we infer that the conducting islands are crystalline, and therefore a POEA film is believed to consist of conducting islands dispersed in an insulating, amorphous matrix. From conductivity measurements we inferred the charge transport to be governed by a typical quasi-one dimensional variable range hopping (VRH) mechanism.  相似文献   

14.
刘宁  童伟  张裕恒 《中国物理》2004,13(6):958-967
The magnetic and transport behaviours of the La_{0.7-x}Gd_xSr_{0.3}MnO_3 (0≤x≤0.70) system are investigated. The experimental results indicate that with increasing Gd doping content, the magnetism of the system changes from the long-range ferromagnetic order state to the cluster-spin glass state, then to the antiferromagnetic (AFM) state. It is interesting that the phase separation appears at x=0.30 and 0.40 and disappears for x≥0.50 where the AFM state occurs. At high doping content, the transport behaviours exhibit abnormality, e.g. there are two temperature ranges in which the ρ-T curves can be well fitted by a variable-range hopping (VRH) model. We suggest that the VRH does not come from the hopping of carriers between clusters, but from the different magnetic backgrounds in the clusters.  相似文献   

15.
聚酰亚胺电导率随温度和电场强度的变化规律   总被引:3,自引:0,他引:3       下载免费PDF全文
王松  武占成  唐小金  孙永卫  易忠 《物理学报》2016,65(2):25201-025201
介质深层充电对航天器安全运行构成了重大威胁.以聚酰亚胺为代表的此类聚合物绝缘介质的电导率受温度影响显著,又因为充电过程中局部产生强电场(10~7V/m量级),因此,其电导率模型需要综合考虑温度和强电场的影响,这对介质深层充电的仿真评估意义重大.已有的两类模型,不是低温区间不适用,就是没有充分考虑强电场的影响.基于跳跃电导理论,本文分析对比了现有电导率模型,提出了适用于较宽温度范围且合理考虑强电场增强效应的电导率新模型,并采用某型聚酰亚胺电导率测试数据做出验证.此外,为了提高新模型在强电场下的低温适用范围,尝试对强电场因子中的温度做变换,取得了满意的效果.参数敏感度分析表明新模型在电导率拟合与外推方面具有参数少、适用性强的优势.  相似文献   

16.
Electrical and optical properties of thin film of amorphous silicon nanoparticles (a-Si) are studied. Thin film of silicon is synthesized on glass substrate under an ambient gas (Ar) atmosphere using physical vapour condensation system. We have employed Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy (TEM) and Atomic Force Microscopy (AFM) to study the morphology and microstructure of this film. It is observed that this silicon film contains almost spherical nanoparticles with size varying between 10 and 40 nm. The average surface roughness is about 140 nm as evident from the AFM image. X-ray diffraction analysis is also performed. The XRD spectrum does not show any significant peak which indicates the amorphous nature of the film. To understand the electrical transport phenomena, the temperature dependence of dc conductivity for this film is studied over a temperature range of (300-100 K). On the basis of temperature dependence of dc conductivity, it is suggested that the conduction takes place via variable range hopping (VRH). Three-dimensional Mott's variable range hopping (3D VRH) is applied to explain the conduction mechanism for the transport of charge carriers in this system. Various Mott's parameters such as density of states, degree of disorder, hopping distance, hopping energy are estimated. In optical properties, we have studied Fourier transform infra-red spectra and the photoluminescence of this amorphous silicon thin film. It is found that these amorphous silicon nanoparticles exhibits strong Si-O-Si stretching mode at 1060 cm−1, which suggests that the large amount of oxygen is adsorbed on the surface of these a-Si nanoparticles. The photoluminescence observed from these amorphous silicon nanoparticles has been explained with the help of oxygen related surface state mechanism.  相似文献   

17.
《Current Applied Physics》2003,3(2-3):219-222
A temperature variation of dc conductivity in the range 77–300 K has been carried out in order to explore the mechanism of charge transport in polyaniline (PAN) doped with sulfuric acid. The variable range hopping (VRH) exponent changes as the transition of the PAN lattice takes place in a narrow pH range thereby indicating that the charge transport is crucially composition dependent. A decrease in activation energy has been observed as the doping level is increased. Spin concentration of charge carriers determined by electron spin resonance spectroscopy has also been found to depend on the doping level of the specimen. Polarons and bipolarons formed during the doping process are the charge carriers in this system. The temperature dependence of dc conductivity and activation energy data are indicative of existence of both VRH and mixed conduction for various doping levels in these samples.  相似文献   

18.
Within the framework of slave-boson mean-field theory, we study the thermodynamic properties of the periodic Anderson lattice model with half-filled conduction band and one 4f electron at each primitive cell and the degeneracy Nd = 2. It is found that after taking into account the direct nearest-neighbor f-f hopping, such a periodic Anderson lattice model can exhibit both an insulating ground state and a heavy-fermion metal ground state depending on the value of the bare f energy level Ef, the hybridization matrix element V, and the direct f-f hopping strength δ. This is unlike the case neglecting the direct f-f hopping, in which such a periodic Anderson lattice model will predict an insulating ground state only.  相似文献   

19.
Polycrystalline bulk ferromagnetic insulating (FMI) Ln0.85Ca0.15MnO3 (Ln=Nd, Pr and Sm) samples are prepared by standard solid-state reaction route and characterized. Powder X-ray diffraction (XRD) data of the manganites show single-phase character. Existing theoretical models predict that the high temperature (T>θD/2, θD being the Debye temperature) dc conductivity (σdc) of these samples is due to adiabatic small polaron-hopping conduction. Greaves’ and Mott's variable range hopping (VRH) conduction mechanisms are not suitable to explain the σdc data at low temperature (T<θD/2).  相似文献   

20.
Transitions from an insulating state to a high-conductivity state are observed in thin polymer films of polyarylenephthalides. The temperature dependences of the conductivity for thin films of wide-band-gap polymer insulators are determined, the relaxation of excess charge is investigated, and the mechanisms of charge transfer in the temperature range preceding the transition to the high-conductivity state are revealed. It is shown that hopping transport over trap states in the band gap is the main mechanism of charge transfer in polyarylenephthalide film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号