首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three sulfonic acid trisaccharides related to the antithrombin-binding DEFGH domain of heparin were synthesised. Trisaccharides carrying the sulfonatomethyl moiety at position 2 or 6 were prepared in high yields by [DE+F] couplings using the same disaccharide uronate donor and the appropriate sulfonic acid acceptor, respectively. The trisaccharide with a 3-deoxy-3-sulfonatomethyl function could be obtained with high efficacy by a [D+EF] coupling where the carboxylic function of the EF uronate acceptor was created at a disaccharide level.  相似文献   

2.
Two pentasaccharide sulfonic acids that were related to the antithrombin-binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium-sulfonatomethyl moieties. The sulfonic-acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic-acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic-acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more-efficient approach, which involved elongation of the trisaccharide acceptor with a non-oxidized precursor of the glucuronic acid followed by post-glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic-acid derivatives revealed that the disulfonate analogue inhibited the blood-coagulation-proteinase factor?Xa with outstanding efficacy; however, the introduction of the third sulfonic-acid moiety resulted in a notable decrease in the anti-Xa activity. The difference in the biological activity of the disulfonic- and trisulfonic-acid counterparts could be explained by the different conformation of their L-iduronic-acid residues.  相似文献   

3.
Two pentasaccharide sulfonic acids that were related to the antithrombin‐binding domain of heparin were prepared, in which two or three primary sulfate esters were replaced by sodium‐sulfonatomethyl moieties. The sulfonic‐acid groups were formed on a monosaccharide level and the obtained carbohydrate sulfonic‐acid esters were found to be excellent donors and acceptors in the glycosylation reactions. Throughout the synthesis, the hydroxy groups to be methylated were masked in the form of acetates and the hydroxy groups to be sulfated were masked with benzyl groups. The disulfonic‐acid analogue was prepared in a [2+3] block synthesis by using a trisaccharide disulfonic acid as an acceptor and a glucuronide disaccharide as a donor. For the synthesis of the pentasaccharide trisulfonic acid, a more‐efficient approach, which involved elongation of the trisaccharide acceptor with a non‐oxidized precursor of the glucuronic acid followed by post‐glycosidation oxidation at the tetrasaccharide level and a subsequent [1+4] coupling reaction, was elaborated. In vitro evaluation of the anticoagulant activity of these new sulfonic‐acid derivatives revealed that the disulfonate analogue inhibited the blood‐coagulation‐proteinase factor Xa with outstanding efficacy; however, the introduction of the third sulfonic‐acid moiety resulted in a notable decrease in the anti‐Xa activity. The difference in the biological activity of the disulfonic‐ and trisulfonic‐acid counterparts could be explained by the different conformation of their L ‐iduronic‐acid residues.  相似文献   

4.
The first total synthesis of the branched oligosaccharide OSE‐1 of Mycobacterium gordonae (strain 990) is reported. An intramolecular aglycon delivery approach was used for constructing the desymmetrized 1,1′‐α,α‐linked trehalose moiety. A [3+2] glycosylation of the trisaccharide donor and trehalose acceptor furnished the right hand side pentasaccharide. Regioselective O3 glycosylation of L ‐rhamnosyl 2,3‐diol allowed expedient synthesis of the left hand side tetrasaccharide. The nonasaccharide was assembled in a highly convergent fashion through a [4+5] glycosylation.  相似文献   

5.
Idraparinux, the fully O-sulfated, O-methylated, heparin-related pentasaccharide possessing selective factor Xa inhibitory activity, was prepared by a new synthetic pathway. This route was based on a [2+3] block synthesis utilizing a 6-O-silyl-protected l-idose-containing trisaccharide acceptor, which was glycosylated with a disaccharide donor containing a non-oxidized precursor of the glucuronic acid. The unique strategy of multiple functionalizations at pentasaccharide levels, involving triple methylation followed by oxidation of the glucose and the idose precursors into d-glucuronic and l-iduronic acids in one step, proved to be highly efficient, providing the target pentasaccharide through a 39-step synthesis starting from d-glucose and methyl α-d-glucopyranoside.  相似文献   

6.
A convergent chemical synthesis of a pentasaccharide found in the O-specific polysaccharide of Escherichia coli O4:K3, O4:K6, and O4:K12 has been achieved in excellent yield. A [3+2] block synthetic strategy has been adopted to couple a disaccharide donor 11 with a trisaccharide acceptor 10 for the construction of the pentasaccharide derivative 12 which on deprotection furnished target pentasaccharide 1 as its 4-methoxyphenyl glycoside. Disaccharide thioglycoside donor 11 and trisaccharide acceptor 10 were prepared from suitably protected monosaccharide intermediates. Yields were excellent in all steps.  相似文献   

7.
The fluoride ion acceptor properties of OsO4 and OsO3F2 were investigated. The salts [N(CH3)4][OsO4F] and [N(CH3)4]2[OsO4F2] were prepared by the reactions of OsO4 with stoichiometric amounts of [N(CH3)4][F] in CH3CN solvent. The salts [N(CH3)4][OsO3F3] and [NO][OsO3F3] were prepared by the reactions of OsO3F2 with a stoichiometric amount of [N(CH3)4][F] in CH3CN solvent and with excess NOF, respectively. The OsO4F- anion was fully structurally characterized in the solid state by vibrational spectroscopy and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO4F]: Abm2, a = 7.017(1) A, b = 11.401(2) A, c = 10.925(2) A, V = 874.1(3) A3, Z = 4, and R = 0.0282 at -50 degrees C. The cis-OsO4F2(2-) anion was characterized in the solid state by vibrational spectroscopy, and previous claims regarding the cis-OsO4F2(2-) anion are shown to be erroneous. The fac-OsO3F3- anion was fully structurally characterized in CH3CN solution by 19F NMR spectroscopy and in the solid state by vibrational spectroscopy of its N(CH3)4+ and NO+ salts and by a single-crystal X-ray diffraction study of [N(CH3)4][OsO3F3]: C2/c, a = 16.347(4) A, b = 13.475(3) A, c = 11.436(3) A, beta = 134.128(4) degrees, V = 1808.1(7) A3, Z = 8, and R = 0.0614 at -117 degrees C. The geometrical parameters and vibrational frequencies of OsO4F-, cis-OsO4F2(2-), monomeric OsO3F2, and fac-OsO3F3- and the fluoride affinities of OsO4 and monomeric OsO3F2 were calculated using density functional theory methods.  相似文献   

8.
Three ganglioside molecular species, SCG-1, SCG-2, and SCG-3, were obtained from the lipid fraction of the chloroform-methanol extract of the sea cucumber Stichopus chloronotus. On the basis of chemical and spectroscopic evidence, the structures of these gangliosides have been determined to be 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (SCG-1), 1-O-[8-O-sulfo(major)-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (SCG-2), and 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (SCG-3). The ceramide moieties were composed of heterogeneous long-chain base and fatty acid units. SCG-3 is the first type of ganglioside containing a fucopyranose in the sialosyl trisaccharide moiety. Moreover, these three gangliosides exhibited neuritogenic activity toward the rat pheochromocytoma PC12 cells in the presence of nerve growth factor.  相似文献   

9.
The synthesis and NOE-based structural characterization is described of thiacalix[4]arene tricarboxylic acid (7), thiacalix[4]crown-5 and -6 monocarboxylic acids (2 and 5), and the bis(N-methylsulfonyl)thiacalix[4]crowns-5 and -6 (4a,b). The 226Ra2+ selectivity coefficients, log(K(Ra)ex/K(M)ex), of the new thiacalix[4]arene derivatives are compared directly with those of thiacalix[4]crown-5 and -6 (1a,b), thiacalix[4]crown-5 and -6 dicarboxylic acids (3a,b), and thiacalix[4]arene di- and tetracarboxylic acids (6 and 8). Thiacalix[4]arene dicarboxylic acid (6) already exhibits a high 226Ra2+ selectivity, but this is significantly improved in the case of 3b, having an additional crown-(6-)ether bridge. The covalent combination of a crown ether and carboxylic acid substituents as in the thiacalix[4]arenes 2,3a,b,4a,b, and 5 gives a better 226Ra2+ selectivity in the presence of Sr2+ or Ba2+ than mixtures of dibenzo-21-crown-7 and thiacalix[4]arene dicarboxylic acid (6) or of pentadecanoic acid and thiacalix[4]crown-6 (1b).  相似文献   

10.
This article describes BP86/SV(P) (DFT) calculations on a representative set of weakly coordinating anions (WCAs) of type [M(L)n]-, their parent neutral Lewis acids M(L)(n-1) and their ate complexes with fluoride, that is, [FM(L)(n)](n-1) (M=B, L=F, OTeF5, C6H5, C6F5, C6H3(CF3)2, CF3; M=P, As, Sb, L=F, OTeF5; M=Al, L=OC(CF3)3). Compounds with fluoride bridges, that is, Sb(n)F(5n) and [Sb(n)F(5n+1)]- (n=2, 3, 4), Al2(L)5F and [(L)3Al-F-Al(L)3]- (L=OC(CF3)3), (F4C6[1,2-B(L)2]2, [F4C6[1,2-B(L)2]2F]-, [F4C6[1,2-B(L)2]2OMe]- (L=C6F5) were also calculated. Based on these BP86/SV(P) and auxiliary MP2/TZVPP, G2, and CBS-Q calculations the relative stabilities and coordinating abilities of these WCAs were established with regard to the fluoride ion affinities (FIA) of the parent Lewis acids, the ligand affinity (LA) of the WCAs, the decomposition of a given WCA in the presence of a hard (H+, proton decomposition PD) and a soft electrophile (Cu+, copper decomposition CuD), the position of the HOMO, the HOMO-LUMO gap, and population analyses of the anions providing partial charges for all atoms. To obtain data that is more reliable, the assessed quantities were calculated through isodesmic reactions. If parts of the calculations could not be done isodesmically, higher levels such as MP2/TZVPP, G2, and CBS-Q were used to obtain reliable values for these reactions. Although the obtained results can not be taken as absolute, the relative ordering of the stabilities of all WCAs will undoubtedly be correct, since a single methodology was chosen for the investigation. To include media effects the decomposition reactions of a subset of 14 WCAs with the SiMe3+ and [Cp2ZrMe]+ ions were also calculated in PhCl and 1,2-F2C6H4 (COSMO solvation model). We found that in most cases gas-phase calculations and solution calculations give comparable results for the stability of the anion. Applications of the LA and FIA that allow one to decide, on thermodynamic grounds, which WCA or Lewis acid is the most suitable for a given problem are sketched.  相似文献   

11.
β-D-Glcp-(1→)3-[β-D-Glcp-(1→6)-]α-D-Manp-(1→3)-β-D-Glcp-(1→3)-[β-D-Glcp(1→6)-]D-Glcp(18)and β-D-Glcp(1→3)-[β-D-Glcp(1→6)-]α-D-Manp-(1→3)-β-D-Glcp(1→3)-[β-D-Glcp(1→6)-]β-D-Glcp-D-(1→3)-Glcp-1→OM3(29)were synthesized as the analogues of the immunomodulator β-D-Glcp-(1→3)-[β-D-Glcp(1→6)-]α-D-Glcp(1→3)-β-D-Glcp(1→63)-[β-D-Glcp(1→6)-]D-Glcp through coupling of trisaccharide donors 9 with trisaccharide acceptor 16 and tetrasaccharide acceptor 27 followed by deprotection,respectively.  相似文献   

12.
A capillary gas chromatographic-mass spectrometric method for the simultaneous determination of stable isotopically labelled L-histidine (L-[3,3-2H2,1',3'-15N2]histidine, L-His-[M + 4]) and urocanic acid ([3-2H,1',3'-15N2]urocanic acid, UA-[M + 3]) in human plasma was developed using DL-[2,3,3,5'-2H4,2'-13C,1',3'-15N2]histidine (DL-His-[M + 7]) and [2,3,5'-2H3,2'-13C,1',3'-15N2]urocanic acid (UA-[M + 6]) as internal standards. L-Histidine and urocanic acid were derivatized to alpha N-(trifluoroacetyl)-imN-(ethoxycarbonyl)-L-histidine n-butyl ester and imN-(ethoxycarbonyl)urocanic acid n-butyl ester. Quantification was carried out by selected ion monitoring of the molecular ions of the respective derivatives of L-His-[M + 4], DL-His-[M + 7], UA-[M + 3] and UA-[M + 6]. The sensitivity, specificity, precision and accuracy of the method were demonstrated to be satisfactory for measuring plasma concentrations of L-His-[M + 4] and UA-[M + 3] following administration of trace amounts of L-His-[M + 4] to humans.  相似文献   

13.
Liao L  Auzanneau FI 《Organic letters》2003,5(15):2607-2610
[structure: see text] Rhamnosylation in mild conditions of a disaccharide containing N-acetylglucosamine afforded the imidate 6 while at higher temperature and concentration of promoter trisaccharide 7 was isolated. The kinetic imidate 6 was independently rearranged in 50% yield to the thermodynamic trisaccharide 7. Comparative NMR studies of 7 in CDCl(3) and DMSO-d(6) suggest the formation of a nonchair conformation in CDCl(3). The structure of 7 was confirmed through the independent synthesis of the N-acetylacetamido trisaccharide 11.  相似文献   

14.
The reaction of an S-bridged Co2(III)Ag3(I) pentanuclear complex, [Ag3[Co(aet)3]2][BF4]3 (aet = NH2CH2CH2S-), with paraformaldehyde in basic acetonitrile, followed by adding aqueous ammonia, produced an aza-capped Co2(III)-Ag3(I) complex, [Ag3[Co(L)]2]3+ ([1]3+) (L = N(CH2NHCH2CH2S-)3). The crystal structure of [1]3+ was determined by X-ray crystallography. [1][PF6]3 x H2O, empirical formula C18H44Ag3Co2F18N8OP3S6, crystallizes in the tetragonal space group 142m with a = 13.012(1) A, c = 24.707(2) A, and Z = 4. In [1]3+ the two aza-capped [Co(L)] units are linked by three Ag(I) atoms, such that the two Co(III) atoms are encapsulated in a macrobicyclic metallocage, [Ag3(I)(L)2]3-. [1]3+ was converted to an aza-capped Co4(III)Zn4(II) octanuclear complex, [Zn4O[Co(L)]4]6+ ([2]6+), by reaction with I- in the presence of Zn2+ and ZnO in water. The crystal structure of [2]6+ was also determined by X-ray crystallography. [2][PF6]6 x 8H2O, empirical formula C36H100Co4F36N16O9P6S12Zn4, crystallizes in the monoclinic space group P2(1/n) with a = 14.33(7) A, b = 25.67(10) A, c = 24.83(6) A, beta = 101.3(3) degrees , and Z = 4. In [2]6+ each of four [Co(L)] units is bound to each trigonal Zn3(II) face of the tetrahedral [Zn4(II)O]6+ core, such that each Co(III) atom is encapsulated in a macrobicyclic [Zn4(II)O(L)] fragment. Treatment of [2]6+ with a basic aqueous solution resulted in a cleavage of the Zn-S bonds to produce an aza-capped Co(III) mononuclear complex, [Co(L)] ([3]), from which [1]3+ is readily reproduced by the reaction with Ag+ in water. All the reactions were found to proceed with retention of the absolute configuration (delta or lambda) of the Co(III) chiral centers; deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and A-[3] were derived from deltadelta-[Ag3[Co(aet)3]2]3+. The contributions to circular dichroism (CD) from the triple helicity in [1]3+, besides from the asymmetric N and S donor atoms and the Co(III) chiral centers in [1]3+ and [2]6+, were estimated by comparing the CD spectra of deltadelta-[1]3+, deltadeltadeltadelta-[2]6+, and delta-[3].  相似文献   

15.
The spectroscopic and photophysical properties of zeolite-Y-entrapped [Ru(bpy)3]2+ co-doped with either [Fe(bpy)3]2+ or [Fe(tpy)2]2+ over a range of iron complex loadings are presented. In solution, [Ru(bpy)3]2+ undergoes efficient bimolecular energy transfer to [Fe(bpy)3]2+, whereas only radiative or trivial energy transfer occurs between [Ru(bpy)3]2+ and [Fe(tpy)2]2+. In sharp contrast, within zeolite Y, both [Fe(bpy)3]2+ and [Fe(tpy)2]2+ were found to effectively quench the donor emission. Fitting the Perrin model to the photophysical data yields an effective quenching radius of 32 and 27 A, respectively, for [Fe(bpy)3]2+ and [Fe(tpy)2]2+. The long-range nature of the quenching suggests F?rster energy transfer. Detailed spectroscopic investigations indicate that [Fe(tpy)2]2+ bound within zeolite Y undergoes significant distortion from octahedral geometry. This distortion results in increased oscillator strength and enhanced spectral overlap, between the [Ru(bpy)3]2+ (3)d pi-pi* donor emission and the co-incident acceptor (1)T2-(1)A1 ligand field absorption compared with solution. This turns on an efficient energy transfer to [Fe(tpy)2]2+ within the confinement of the zeolite Y supercage. Overall, this is an interesting example of the ability of the zeolite environment to provoke new photophysical processes not possible in solution.  相似文献   

16.
Carboxylic acid host compounds (3) having a phenanthrene-condensed bicyclo[2.2.1]hept-2-en-7-one skeleton have been synthesized by the [4 + 2]pi cycloaddition of phencyclone (1a) with 2-alkenoic acids (2) and their inclusion behavior was investigated. The endo [4 + 2]pi cycloadducts (3) enclathrated alcohols and ethers besides aromatics and ketones. The X-ray crystallographic analysis of the inclusion compound (3ac-dioxane) of the endo [4 + 2]pi cycloadduct (3ac) of phencyclone and trans 2-butenoic acid (2c) indicated that dioxanes are located at the opposite side of the bridged carbonyl of the bicyclo[2.2.1]hept-2-en-7-one moiety, in which the O-H...O and C-H...O hydrogen bonds play an important role in the inclusion complex formation. Similarly, a pair of 3-pentanone molecules were included in the endo [4 + 2] pi cycloadduct (3ae) of 1a and cinnamic acid (2e). In both cases, the hosts are linked by the edge-to-face interaction between the phenanthrene and phenyl rings and the "bidentate" C-H...O hydrogen bonds between the phenanthrene-ring hydrogens and the bridged carbonyl or the carboxylic carbonyl group. The endo [4 + 2] pi cycloadduct (3bl) of tetracyclone (1b) and acrylamide (2l) also showed a wide-range inclusion behavior, in which alcohols are included by making a hydrogen-bond loop with the amide groups. The inclusion behavior of the carboxylic acid Diels-Alder hosts is discussed on the basis of the single crystal X-ray analysis, thermal analysis and semiempirical molecular orbital calculation data.  相似文献   

17.
The imidotungsten dimethyl compound [W(N2Npy)(NPh)Me2] 2 reacts with BArF3 to form the cationic complex [W(N2Npy)(NPh)Me]+ 3+ [anion = [MeBArF3]-; ArF = C6F5; N2Npy = MeC(2C5H4N)(CH2NSiMe3)2] which undergoes methyl group exchange with added 2, [Cp2ZrMe2] or ZnMe2; treatment of cation 3+ with CO2 or isocyanates leads to cycloaddition reactions at the W=NPh bond and not insertion into the W-Me bond, despite the latter product being the most thermodynamically favourable according to DFT calculations.  相似文献   

18.
Tienan Jin 《Tetrahedron letters》2004,45(51):9435-9437
1-Substituted tetrazoles were synthesized via the [3+2] cycloaddition between isocyanides and trimethylsilyl azide in the presence of an acid catalyst and MeOH. Various 1-substituted tetrazoles were obtained in good to high yields. The reaction probably proceeds through the in situ formation of hydrazoic acid, followed by a successive [3+2] cycloaddition with the isocyanide activated by an acid.  相似文献   

19.
Treatment of LambdaL-[Co(L-cys-N,S)(en)2]+ (l-H2cys = L-cysteine) with [PtCl4]2- in water, followed by the addition of acid, gave an S-bridged CoIII2PtII trinuclear complex ([1]4+), which was reversibly converted to its deprotonated complex ([2]2+) in an aqueous solution. While [1]4+ formed only a trans isomer, [2]2+ existed as a mixture of trans and cis isomers. The selective formation of a cis isomer was achieved by treatment of [1]4+ or [2]2+ with phthalic acid in water, which afforded a unique CoIII4PtII2 hexanuclear complex ([3]4+). Complex [3]4+ was reverted back to [1]4+ by treatment with aqueous HCl, accompanied by the complete cis-to-trans conversion.  相似文献   

20.
The nitrile ligands in the platinum(IV) complexes trans-[PtCl4(RCN)2] (R=Me, Et, CH2Ph) and cis/trans-[PtCl4(MeCN)(Me2SO)] are involved in a metalla-Pinner reaction with N-methylbenzohydroxamic acid (N-alkylated form of hydroxamic acid, hydroxamic form; F1), PhC(=O)N(Me)OH, to achieve the imino species [PtCl4[NH=C(R)ON(Me)C(=O)Ph]2 (1-3) and [PtCl4[NH=C(Me)ON(Me)C(=O)Ph](Me2SO)] (7), respectively. Treatment of trans-[PtCl4(RCN)2] (R=Me, Et) and cis/trans-[PtCl4(MeCN)(Me2SO)] with the O-alkylated form of a hydroxamic acid (hydroximic form), i.e. methyl 2,4,6-trimethylbenzohydroximate, 2,4,6-(Me3C6H2)C(OMe)=NOH (F2A), allows the isolation of [PtCl4[NH=C(R)ON=C(OMe)(2,4,6-Me3C6H2)]2] (5, 6) and [PtCl4[NH=C(Me)ON=C(OMe)(2,4,6-Me3C6H2)](Me2SO)] (8), correspondingly. In accord with the latter reaction, the coupling of nitriles in trans-[PtCl4(EtCN)2] with methyl benzohydroximate, PhC(OMe)=NOH (F2B), gives [PtCl4[NH=C(Et)ON=C(OMe)Ph]2] (4). The addition proceeds faster with the hydroximic F2, rather than with the hydroxamic form F1. The complexes 1-8 were characterized by C, H, N elemental analyses, FAB+ mass-spectrometry, IR, 1H and 13C[1H] NMR spectroscopies. The X-ray structure determinations have been performed for both hydroxamic and hydroximic complexes, i.e. 2 and 6, indicating that the imino ligands are mutually trans and they are in the E-configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号