首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Knopff O  Alexakis A 《Organic letters》2002,4(22):3835-3837
[formula: see text] The zinc enolates, resulting from the copper-catalyzed enantioselective conjugate addition of dialkyl zinc reagents to cyclic and acyclic enones, could be trapped, quantitatively, as silyl enol ethers with TMSOTf in apolar solvents or with TMSCI and NEt3. These enantiomerically enriched silyl enol ethers were submitted to four synthetic transformations to show their synthetic utility. The zinc enolates obtained from acyclic enones were found to be configurationally stable, as shown by the stereochemistry of the silyl enol ethers.  相似文献   

2.
The oxidative conversion of silyl enol ethers to α,β-unsaturated ketones using a less-hindered class of oxoammonium salts (AZADO(+)BF(4)(-)) is described. The reaction proceeds via the ene-like addition of oxoammonium salts to silyl enol ethers.  相似文献   

3.
3-tert-Butyldimethylsilyloxyalk-2-enylsulfonium salts, generated in situ from the reaction of alpha,beta-enones with dimethyl sulfide in the presence of TBSOTf, underwent a novel nucleophilic substitution with allylindiums to give silyl enol ethers of delta,epsilon-alkenyl ketones in good yields, which correspond to formal Michael addition products. In a similar manner, 1,4-propargylation of propargylindiums onto the sulfonium salts produced the corresponding silyl enol ethers of delta,epsilon-alkynyl ketones in good yields. Organoindium reagents derived from gamma-substituted propargyl bromide and indium afforded the corresponding silyl enol ethers of beta-allenyl ketones in good yields. The reaction proceeds via an addition-substitution mechanism involving the formation of allylic sulfonium salts. The presence of the intermediate sulfonium salt was confirmed by observation of the low-temperature (1)H NMR spectra.  相似文献   

4.
The first catalytic enantioselective alkynylation of chromones is reported. In this process, chromones are silylated to form silyloxybenzopyrylium ions that lead to silyl enol ethers after Cu‐catalyzed alkyne addition using StackPhos as a ligand. The outcome of the reaction is impacted by distal ligand substituents with differing electronic character and it was found that successful reactions could be achieved with different ligand congeners by using different solvents. This sequence enables access to different products by protonation or further functionalization, thus increasing complexity in a divergent manner. The transformation is high yielding over a broad scope to provide a variety of useful chromanones in high enantioselectivity.  相似文献   

5.
The nitrovinyl-substituted quinones 2-(2-nitrovinyl)-1,4-benzoquinone and 2-(2-nitrovinyl)-1,4-naphthoquinone react with a variety of cyclic and acyclic enol ethers via two competing pathways. In one pathway, the nitrovinylquinone acts as an inverse electron-demand [4 + 2] diene. This gives quinoid carbocycles, which readily tautomerize to their hydroquinone form. The other pathway involves conjugate (Michael) addition of the enol ether to the nitrovinylquinone, followed by ring closure. This gave dihydrobenzofurans, which can eliminate an alcohol to give benzofurans. Hindered enol ethers tended to favor the conjugate addition pathway, while less hindered enol ethers favored cycloaddition.  相似文献   

6.
A new catalytic asymmetric tandem α‐alkenyl addition/proton shift reaction of silyl enol ethers with ketimines was serendipitously discovered in the presence of chiral N,N′‐dioxide/ZnII complexes. The proton shift preferentially proceeded instead of a silyl shift after α‐alkenyl addition of silyl enol ether to the ketimine. A wide range of β‐amino silyl enol ethers were synthesized in high yields with good to excellent ee values. Control experiments suggest that the Mukaiyama–Mannich reaction and tandem α‐alkenyl addition/proton shift reaction are competitive reactions in the current catalytic system. The obtained β‐amino silyl enol ethers were easily transformed into β‐fluoroamines containing two vicinal tetrasubstituted carbon centers.  相似文献   

7.
A new procedure for the synthesis of silyl enol ethers from S-α-silylbenzyl thioesters without need for either bases or catalysts via C---C bond formation is described. Solutions of S-α-silylbenzyl thioesters were simply heated at 180°C for 24 h in a sealed tube to give silyl enol ethers in good yields with high stereoselectivity. Cyclization of the dipoles generated by thermal rearrangement of the silyl group and elimination of sulfur afforded silyl enol ethers.  相似文献   

8.
Copper(II) acetate catalyzes the coupling of pinacol vinylboronates with silanols producing enol silyl ethers. This represents a novel enol silyl ether synthesis via formation of the C-O bond instead of the conventional Si-O bond. This also constitutes the first transition-metal-catalyzed oxidative cross-coupling with silanols.  相似文献   

9.
Herein we reported an efficient photoredox-catalyzed reaction for site-selective C(sp3)−H functionalization of carboxamides with silyl enol ethers as radical acceptors. The reaction proceeded through amidyl radical-directed 1,5-hydrogen atom transfer (1,5-HAT) and C(sp3)−C(sp3) bond formation via radical addition of silyl enol ethers. The process features mild conditions and high functional-group tolerance, allowing the preparation of a series of carboxamides with pendant carbonyl moieties.  相似文献   

10.
A highly enantioselective addition of silyl enol ethers derived from simple methyl ketones is described. The catalyst system of silicon tetrachloride activated by a chiral bisphosphoramide (R,R)-7 effectively promotes the addition of a variety of unsubstituted silyl enol ethers to aromatic, olefinic, and heteroaromatic aldehydes in excellent yield. [reaction: see text]  相似文献   

11.
《Tetrahedron》1988,44(7):2055-2062
Organocopper compounds add to enones and enoates in the presence of chlorotrimethylsilane in ether giving the conjugate adducts in preparatively useful yields via the silyl enol ethers. Presence of lithium iodide is important and excess of chlorotrimethylsilane accelerates the reactions.The combination of organocopper compound, iodotrimethyl-silane and dimethyl sulfide gave faster reactions and very high yields, particularly in dichloromethane, where the reaction mixtures gradually became homogeneous.  相似文献   

12.
An efficient formal [6+2] cycloaddition reaction of a new six-carbon unit with enol silyl ether was developed on the basis of a dicobalt hexacarbonyl propargyl cation species. Under the influence of EtAlCl2, 6-benzoyloxy-2-(triisopropylsilyloxy)-1-hexen-4-yne-dicobalthexacarbonyl reacted with enol triisopropylsilyl ethers to yield 7-(triisopropylsilyloxy)-3-cyclooctyn-1-one-dicobalthexacarbonyl derivatives in good yield. The reactions with cyclic enol silyl ethers as well as acyclic enol silyl ethers exhibited remarkably high diastereoselectivity.  相似文献   

13.
Reported here is a highly efficient 1,6-conjugate addition of fluorinated silyl enol ethers to para-quinone methides, allowing facile access to a range of β,β-diaryl α-fluorinated ketones with good to high yields. Fe(OTf)3 was identified as the optimal catalyst, with the loading of 3?mol%. Notably, this represent the first 1,6-conjugate addition with fluorinated silyl enol ethers. The synthetic potential of the resulting adducts is also demonstrated.  相似文献   

14.
We report the diastereoselective addition of a variety of nucleophiles to alpha-(trimethylsilyl)benzyl-substituted oxocarbenium ions. The oxocarbenium ions are generated from alpha-acetoxy ethers, which are easily prepared via reductive acetylation of esters. The alpha-(trimethylsilyl)benzyl auxiliary produces good to excellent facial selectivity with a variety of nucleophiles, including silyl enol ethers, silyl ketene acetals, allylsilanes, and crotylsilanes. The utility of this auxiliary is further demonstrated in a complex ketone aldol coupling reaction. [reaction: see text]  相似文献   

15.
A new method for the stereoselective preparation of proximal β-hydroxy silyl enol ethers from α,β-epoxyketones using silyllithium reagents has been developed. The reaction is believed to proceed via Brook rearrangement assisted by opening of the adjacent epoxide. A number of α,β-epoxyketones were reacted with methyldiphenylsilyllithium to form the corresponding proximal β-hydroxy silyl enol ethers in good to excellent yield and excellent stereoselectivity.  相似文献   

16.
Highly colored (red) solutions of various enol silyl ethers and tetranitromethane (TNM) are readily bleached to afford good yields of alpha-nitro ketones in the dark at room temperature or below. Spectral analysis show the red colors to be associated with the intermolecular 1:1 electron donor-acceptor (EDA) complexes between the enol silyl ether and TNM. The formation of similar vividly colored EDA complexes with other electron acceptors (such as chloranil, tetracyanobenzene, tetracyanoquinodimethane, etc.) readily establish enol silyl ethers to be excellent electron donors. The deliberate irradiation of the diagnostic (red) charge-transfer absorption bands of the EDA complexes of enol silyl ethers and TNM at -40 degrees C affords directly the same alpha-nitro ketones, under conditions in which the thermal reaction is too slow to compete. A common pathway is discussed in which the electron transfer from the enol silyl ether (ESE) to TNM results in the radical ion triad [ESE(*)(+), NO(2)(*), C(NO(2))(3)(-)]. A subsequent fast homolytic coupling of the cation radical of the enol silyl ether with NO(2)(*)() leads to the alpha-nitro ketones. The use of time-resolved spectroscopy and the disparate behavior of the isomeric enol silyl ethers of alpha- and beta-tetralones as well as of 2-methylcyclohexanone strongly support cation radicals (ESE(*)(+)) as the critical intermediate in thermal and photoinduced electron-transfer as described in Schemes 1 and 2, respectively.  相似文献   

17.
A new method for the regioselective preparation of silyl enol ethers from acyloin derivatives using silyllithium reagents has been developed. Both dimethylphenyl- and methyldiphenylsilyllithium were found to be effective, the latter providing greater stereocontrol. The reaction is believed to proceed via Brook rearrangement assisted by expulsion of the adjacent leaving group. A number of acyclic acyloin derivatives were reacted to form the corresponding silyl enol ethers in good to excellent yield.  相似文献   

18.
A highly efficient enantioselective [2+2] cycloaddition between alkynones and cyclic enol silyl ethers was developed by using a chiral N,N′‐dioxide‐zinc(II) complex as a catalyst. This method functions well for a variety of terminal alkynes as well as cyclic enol silyl ethers, with good to excellent enantioselectivity (up to 97 % ee). This is also the first successful example for the catalytic enantioselective [2+2] cycloaddition of internal alkynes with cyclic enol silyl ethers to give fully substituted cyclobutenes. Meanwhile, the desired cyclobutene product can easily be transformed into fused cyclobutane derivatives.  相似文献   

19.
Song Z  Kui L  Sun X  Li L 《Organic letters》2011,13(6):1440-1443
A highly stereoselective approach to novel tetrasubstituted (Z)-β-hydroxy-α-TMS silyl enol ethers is described. The reaction proceeds via a sequential addition/[1,2]-Brook rearrangement/epoxide-opening process of TMS-substituted oxiranyl anions with acylsilanes.  相似文献   

20.
D Kang  S Park  T Ryu  PH Lee 《Organic letters》2012,14(15):3912-3915
The chemoselective formation of an enolate from alkyne in the presence of a carbonyl and imine group was realized, which constructed a variety of structural motifs under exceedingly mild reaction conditions in a tandem process. Reaction driving tandem hydrosilyloxylation/aldol reactions was achieved through the formation of enol silyl ethers catalytically generated in situ from readily available alkynes. These reactions were expanded to obtain β-amino enol silyl ethers in good yields via the tandem hydrosilyloxylation/isomerization/Mannich reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号