首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A practical and simple synthesis of 2,5-disubstituted oxazoles was developed via a TBHP (tert-butyl hydroperoxide)/I2-mediated domino strategy. The reaction proceeds in series, giving rise to the formation of an intermolecular C–N bond and an intramolecular C–O bond, which yield oxazole derivatives simultaneously. The reaction gave the desired products from readily available substrates under mild conditions.  相似文献   

2.
《化学:亚洲杂志》2018,13(18):2606-2610
The transition‐metal‐catalyzed formal C−C bond insertion reaction of diazo compounds with monocarbonyl compounds is well established, but the related reaction of 1,3‐diketones instead gives C−H bond insertion products. Herein, we report a protocol for a gold‐catalyzed formal C−C bond insertion reaction of 2‐aryl‐2‐diazoesters with 1,3‐diketones, which provides efficient access to polycarbonyl compounds with an all‐carbon quaternary center. The aryl ester moiety plays a crucial role in the unusual chemoselectivity, and the addition of a Brønsted acid to the reaction mixture improves the yield of the C−C bond insertion product. A reaction mechanism involving cyclopropanation of a gold carbenoid with an enolate and ring‐opening of the resulting donor–acceptor‐type cyclopropane intermediate is proposed. This mechanism differs from that of the traditional Lewis‐acid‐catalyzed C−C bond insertion reaction of diazo compounds with monocarbonyl compounds, which involves a rearrangement of a zwitterion intermediate as a key step.  相似文献   

3.
A strategy for the assembly of the entire carbon backbone of a stereoisomer of the antitumor marine natural product hemicalide has been investigated. The devised convergent approach relies on Horner–Wadsworth–Emmons and Julia–Kocienski olefination reactions for the construction of the C6=C7 and C34=C35 double bonds, respectively, an aldol reaction to create the C27−C28 bond, and a Suzuki–Miyaura cross-coupling as the endgame to form the C15−C16 bond.  相似文献   

4.
We report tandem alkyl-arylations and phosphonyl-arylations of vinyl ureas by way of a photocatalytic radical-polar crossover mechanism. Addition of photoredox-generated radicals to the alkene forms a new C−C or C−P bond and generates a product radical adjacent to the urea function. Reductive termination of the photocatalytic cycle generates an anion that undergoes a polar Truce–Smiles rearrangement, forming a C−C bond. The reaction is successful with a range of α-fluorinated alkyl sodium sulfinate salts and diarylphosphine oxides as radical precursors, and the conformationally accelerated Truce–Smiles rearrangement is not restricted by the electronic nature of the migrating aromatic ring. Formally the reaction constitutes an α,β-difuctionalisation of a carbon–carbon double bond, and proceeds under mild conditions with visible light and a readily available organic photocatalyst. The products are α,α-diaryl alkylureas typically functionalized with F or P substituents that may be readily converted into α,α-diaryl alkylamines.  相似文献   

5.
We report tandem alkyl‐arylations and phosphonyl‐arylations of vinyl ureas by way of a photocatalytic radical‐polar crossover mechanism. Addition of photoredox‐generated radicals to the alkene forms a new C?C or C?P bond and generates a product radical adjacent to the urea function. Reductive termination of the photocatalytic cycle generates an anion that undergoes a polar Truce–Smiles rearrangement, forming a C?C bond. The reaction is successful with a range of α‐fluorinated alkyl sodium sulfinate salts and diarylphosphine oxides as radical precursors, and the conformationally accelerated Truce–Smiles rearrangement is not restricted by the electronic nature of the migrating aromatic ring. Formally the reaction constitutes an α,β‐difuctionalisation of a carbon–carbon double bond, and proceeds under mild conditions with visible light and a readily available organic photocatalyst. The products are α,α‐diaryl alkylureas typically functionalized with F or P substituents that may be readily converted into α,α‐diaryl alkylamines.  相似文献   

6.
A regioselective oxidation of allylic C–H bond to C–O bond catalyzed by copper (I) was developed with diacyl peroxides as oxidants. The oxidation of allylic C–H bond was accomplished with good yield and regioselectivity under mild reaction conditions. This method has a broad substrate scope including cyclic olefins, terminal and internal acyclic olefins and allyl benzene compounds. The reaction proceeds by a radical mechanism as suggested by spin trapping experiments.  相似文献   

7.
In the present work, the mechanism and kinetics of the reaction of perfluoropolymethylisopropyl ether (PFPMIE) with OH radical are studied. The reaction between PFPMIE and OH radical is initiated through breaking of C–C or C–O bond of PFPMIE. These reactions lead to the formation of COF2 molecules and alkyl radical. The pathways corresponding to the reaction between PFPMIE and OH radical have been modelled using density functional theory methods M06-2X and MPW1K with 6-31G(d,p) basis set. It is found that the C–C bond breaking reaction is most favourable than the C–O bond breaking reaction. The subsequent reactions of the alkyl radicals, formed from the C–C bond breaking reactions, are studied in detail. The rate constant for the initial oxidation reactions is calculated using canonical variational transition state theory with small curvature tunnelling corrections over the temperature range of 278–350 K. From the calculated reaction, potential energy surface and rate constant, the lifetime and global warming potential of PFPMIE are studied.  相似文献   

8.
Copper nanoparticles (CuNPs) have been deeply studied as catalyst for organic synthesis. Various new Cu nanocatalysts are reviewed for different types of organic reactions, such as C–C bond formation (including Mizoroki–Heck, Suzuki–Miyaura, Glaser-Hay coupling), C–N bond formation (including Chan-Lam, Buchwald–Hartwig, Ullmann and Goldberg coupling, alkyne–azide cycloaddition etc.), C–O bond formation and multi-step reactions with C–X (C, N, O) bond formation. Most CuNP-catalyzed protocols possess merits of mild reaction conditions, high catalytic efficiency, good functional group tolerance, lower cost, clean reaction profiles and reusable copper catalyst. The application of these CuNPs in organic synthesis holds potential for significant impact on advancing organic synthesis and promoting further development of organic copper chemistry.  相似文献   

9.
Abstract

Comprehensive studies of photoinduced addition of phosphorus trihalides to unsaturated compounds, i.e. alkenes, alkynes, alkadienes, and enynes, were carried out. The addition of phosphorus trihalides to unsaturated C?C bonds is proved to be a radical chain process, the total reaction irate increasing with the increase of electron density on the unsaturated C?C bond. The photoinduced reaction of alkenes with PRr3 goes via Br atom attack on the least substituted C-atom of an unsaturated C?C bond and mainly results in the formation or dibromophosphines with a phosphorus atom in the second position of the carbon chain ?(1–2)-addition. In the case of polysubstituted alkenes an alternative direction of the reaction is realized, namely the photoinduced substitutional dibromophosphination to alkyl group. The reaction with alkynes results only in the formation of the products of (1–2)-addition. The Regioselectivity of the addition of phosphorous trihalide fragments to the substrate containing a heteroatom at the unsaturated C?C bond is determined by the stability of the secondary halogenoalkenyl(alky1) radical.  相似文献   

10.
Abstract

A series of 2-(arylthio)arylcyanamide derivatives were obtained in excellent yields via a copper-catalyzed domino C–S cross-coupling of 2-aminobenzothiazoles with aryl iodides. This reaction occurred via an intermolecular C–S bond formation, associated with C–S bond cleavage, followed by an intermolecular S-arylation under ligand-free conditions. Their structures were unambiguously determined by the analytic tools, such as HRMS, 1H, and 13C NMR analysis.  相似文献   

11.
An unprecedented photo‐promoted skeletal rearrangement reaction of phosphine–borane frustrated Lewis pairs, o‐(borylaryl)phosphines, involving cleavage of an unstrained sp2C–sp3C σ‐bond is reported. The reaction realizes an efficient synthesis of cyclic phosphonium borate compounds. The reaction mechanism via a boranorcaradiene intermediate is proposed based on theoretical calculations. This work sheds light on the new photoreactivity of phosphine–borane FLPs.  相似文献   

12.
韩波  张炯  焦海军  吴立朋 《催化学报》2021,42(11):2059-2067
发展温和条件下胺类化合物的高效合成方法是催化与合成领域长期研究的课题.其中,酰胺还原因其原料来源广、易于合成而广受关注.酰胺还原到胺需要选择性断裂C=O键,因此该反应具有很大的挑战性.传统酰胺还原方法需要使用当量的强还原试剂,如四氢铝锂、硼氢化钠等,且官能团兼容性较差.使用氢气还原原子经济性最高,也最有吸引力;然而,目前已报道的体系大都在高温(>120℃)或高压(>40 bar H2)的条件下进行.虽然催化硼氢化可以在温和的条件下将羰基化合物还原,但由于酰胺化合物惰性比较高,其选择性的催化硼氢化研究则相对较少,而且在温和条件下对三级、二级、一级酰胺都适用的例子依然非常有限.本文采用前过渡金属锆氢催化剂实现了室温条件下酰胺选择性硼氢化制备胺类化合物,并进行了详细的机理研究.原位红外监测到反应过程中酰胺和硼烷逐渐减少,目标产物逐渐增多;但并未给出其他反应中间体的信息.核磁研究以及对照实验结果表明,反应中有苯甲醛的生成,可能是反应中间体.因此推测,该催化体系经历了锆氢介导的酰胺C?N键断裂、重组、C?O键断裂这一特殊的酰胺键活化转化过程.DFT计算也证实了上述反应历程的可行性.除一些常见官能团外,本方法对羧酸酯、氰基、硝基、烯烃和炔烃这些可能被硼氢化的官能团同样具有兼容性.而且本文体系对一些生物、药物分子衍生酰胺的硼氢化也可以顺利进行.可见,本文发展了一种温和条件下使用廉价催化剂和原料选择性合成胺类化合物的方法.  相似文献   

13.
韩波  张炯  焦海军  吴立朋 《催化学报》2021,42(11):2059-2067
发展温和条件下胺类化合物的高效合成方法是催化与合成领域长期研究的课题.其中,酰胺还原因其原料来源广、易于合成而广受关注.酰胺还原到胺需要选择性断裂C=O键,因此该反应具有很大的挑战性.传统酰胺还原方法需要使用当量的强还原试剂,如四氢铝锂、硼氢化钠等,且官能团兼容性较差.使用氢气还原原子经济性最高,也最有吸引力;然而,目前已报道的体系大都在高温(>120℃)或高压(>40 bar H2)的条件下进行.虽然催化硼氢化可以在温和的条件下将羰基化合物还原,但由于酰胺化合物惰性比较高,其选择性的催化硼氢化研究则相对较少,而且在温和条件下对三级、二级、一级酰胺都适用的例子依然非常有限.本文采用前过渡金属锆氢催化剂实现了室温条件下酰胺选择性硼氢化制备胺类化合物,并进行了详细的机理研究.原位红外监测到反应过程中酰胺和硼烷逐渐减少,目标产物逐渐增多;但并未给出其他反应中间体的信息.核磁研究以及对照实验结果表明,反应中有苯甲醛的生成,可能是反应中间体.因此推测,该催化体系经历了锆氢介导的酰胺C?N键断裂、重组、C?O键断裂这一特殊的酰胺键活化转化过程.DFT计算也证实了上述反应历程的可行性.除一些常见官能团外,本方法对羧酸酯、氰基、硝基、烯烃和炔烃这些可能被硼氢化的官能团同样具有兼容性.而且本文体系对一些生物、药物分子衍生酰胺的硼氢化也可以顺利进行.可见,本文发展了一种温和条件下使用廉价催化剂和原料选择性合成胺类化合物的方法.  相似文献   

14.
Bifunctional Au@Ni core–satellite nanostructures synthesized by a one‐step assembly method were employed for in situ surface‐enhanced Raman spectroscopic (SERS) monitoring of Ni‐catalyzed C?C bond‐forming reactions. Surprisingly, the reaction that was thought to be an Ullmann‐type self‐coupling reaction, was found to be a cross‐coupling reaction proceeding by photoinduced aromatic C?H bond arylation. In situ SERS monitoring enabled the discovery, and a series of biphenyl compounds were synthesized photocatalytically, and at room temperature, using cheap Ni nanoparticle catalysts.  相似文献   

15.
C–S bond formation reactions are widely distributed in the biosynthesis of biologically active molecules, and thus have received much attention over the past decades. Herein, we report intramolecular C–S bond formation by a P450 monooxygenase, TleB, which normally catalyzes a C−N bond formation in teleocidin biosynthesis. Based on the proposed reaction mechanism of TleB, a thiol-substituted substrate analogue was synthesized and tested in the enzyme reaction, which afforded the unprecedented sulfur-containing thio-indolactam V, in addition to an unusual indole-fused 6/5/8-tricyclic product whose structure was determined by the crystalline sponge method. Interestingly, conformational analysis revealed that the SOFA conformation is stable in thio-indolactam V, in sharp contrast to the major TWIST form in indolactam V, resulting in differences in their biological activities.  相似文献   

16.
A cascade reaction that involves a unique C–C bond cleavage has been discovered. This protocol affords an unusual and facile method for the synthesis of 1,3-oxazin derivatives under mild conditions.  相似文献   

17.
Selective activation/functionalization of C−H bonds has emerged as an atom- and step-economical process at the forefront of modern synthetic chemistry. This work reports palladium-catalyzed exclusively para-selective C−H activation/aryl–aryl bond formation with a preference over N-arylation under the Buchwald–Hartwig amination reaction of 4-phenylamino[2.2]paracyclophane. This innovative synthetic strategy allows a facile preparation of [2.2]paracyclophane derivatives featuring disparate para-substitutions at C-4 and C-7 positions in a highly selective manner, gives access to a series of potential candidates for [2.2]paracyclophane-derived new planar chiral ligands. The unprecedented behavior in reactivity and preferential selectivity of C−C coupling over C−N bond formation via C−H activation is unique to the [2.2]paracyclophane scaffold compared to the non-cyclophane analogue under the same reaction conditions. Selective C−H activation/aryl–aryl bond formation and sequential C−N coupling product formation is evidenced unambiguously by X-ray crystallography.  相似文献   

18.
《印度化学会志》2021,98(12):100247
To date, the C–H activation protocol and its functionalization of bonds via transition metal have witnessed major attention in coordination chemistry as they eliminate the pre-functionalization of the substrate. Conventional approaches use a stoichiometric amount of chemical oxidants which are toxic under mild conditions. This will create a major problem in C–H functionalization reactions that involve a selective issue of reductive elimination from metal center to form a significant amount of by-product (waste) in large amount which is difficult to separate and thus reduce atom economy and sustainability of the reaction medium. This will limit catalyst turnover and thus, decreases the reaction rate. To avoid this, there is an urgent need for renewable resources which bring about the functionalization of the C–H bond. Metalla-electro catalyzed is the cleanest tool on the platform of C–H activation chemistry. Here, electricity was being involved as a clean surrogate of chemical oxidant and holds unleashed potential for an oxidative protocol of C–H activation with unmet site selectivity. This mini-review pay attention to the C–H functionalization of the bond to C–C, C–N, and C-Miscellaneous (P, O, and S) bond linkage by employing different transition metal {precious (Pd, Rh, Ru, and Ir)} and {earth-abundant (Mn, Ni, Co, and Cu)} using the electrochemical tool. Such metalla-electro catalyzed tools are helpful to those who were not being trained electrochemists but can unleash this potential benefit in various sustainable organic transformations.  相似文献   

19.
Rhodium transition-metal-organic cooperative catalysis, which has been intensively studied by many chemists, represents a great success in C–H bond activation because of high efficiencies and selectivities. Typically, in the reaction mechanism of aldehyde and alkene catalyzed by Rh(I) complex and 2-amino-3-picoline, two kinds of metala-cyclic transition-metal complexes of (iminoacyl)rhodium(III)hydride and (iminoacyl)rhodium(III) alkyl are generally formed. The two complexes play an important role in the overall reaction, in which the Rh–C bond formations are involved. So it is meaningful to understand the strength of Rh–C bond, which can be measured by the homolytic bond dissociation enthalpies (BDEs). To this end, we first calculated 16 relative Rh–C BDEs of Tp′Rh(CNneopentyl)RH (Tp′?=?hydridotris-(3,5-dimethylpyrazolyl)borate) by 19 density functional theory (DFT) methods. Furthermore, the 5 absolute Rh–C BDEs of Rh transition-metal complexes were also calculated. The results show that the B97D3 is the most accurate method to predict the relative and absolute Rh–C BDEs and the corresponding RMSE values are the smallest of 2.8 and 3.3?kcal/mol respectively. Therefore, the Rh–C BDEs of (iminoacyl)rhodium(III)hydride and (iminoacyl)rhodium(III)alkyl as well as the substituent effects were investigated by using the B97D3 method. The results indicated that the different substituents exhibit different effects on different types of Rh–C BDEs. In addition, the analysis including the natural bond orbital (NBO) as well as the energies of frontier orbitals were performed in order to further understand the essence of the Rh–C BDE change patterns.  相似文献   

20.
C–S bond formation reactions are widely distributed in the biosynthesis of biologically active molecules, and thus have received much attention over the past decades. Herein, we report intramolecular C–S bond formation by a P450 monooxygenase, TleB, which normally catalyzes a C?N bond formation in teleocidin biosynthesis. Based on the proposed reaction mechanism of TleB, a thiol‐substituted substrate analogue was synthesized and tested in the enzyme reaction, which afforded the unprecedented sulfur‐containing thio‐indolactam V, in addition to an unusual indole‐fused 6/5/8‐tricyclic product whose structure was determined by the crystalline sponge method. Interestingly, conformational analysis revealed that the SOFA conformation is stable in thio‐indolactam V, in sharp contrast to the major TWIST form in indolactam V, resulting in differences in their biological activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号