首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper reports the synthesis and physical properties of a series of bipolar host materials, using of a hole-transporting triphenylamine (TPA) monomer as a core incorporated with different numbers of diphenylphosphine oxide (PO) as electron-transporting moieties, 4-(diphenylphosphoryl)-N,N-diphenylaniline (DDPA), 4-(diphenylphosphoryl)-N-(4-(diphenylphosphoryl)phenyl)-N-phenylaniline (DDPP), and tris(4-(diphenylphosphoryl)phenyl)amine (TDPA), for solution-processed deep-blue phosphorescent organic light-emitting devices (PhOLEDs). With the increasing numbers of PO units, the glass-transition temperature of those compounds rise gradually. Moreover, the newly synthesized compounds all possess high triplet energies, which can prevent back energy transfer between the host and dopant molecules, and are expected to serve as appropriate hosts for iridium(III) tris(3,5-difluoro-4-cyanophenyl)pyridinato-N,C′ (FCNIrpic). The solution-processed devices using DDPP and TDPA as the hosts for the phosphorescence emitter FCNIrpic showed the maximum luminance efficiencies of 9.7 and 6.6 cd A−1, respectively. The efficiency of TDPA based device shows nearly three times higher than the value of commonly used host material 1,3-bis(9-carbazolyl)benzene (mCP) with the same structure, which is outstanding with respect to other works related to the solution-processed deep-blue PhOLEDs based on small-molecule hosts.  相似文献   

2.
To achieve high efficiencies in blue phosphorescent organic light‐emitting diodes (PhOLEDs), the triplet energies (T1) of host materials are generally supposed to be higher than the blue phosphors. A small organic molecule with low singlet energy (S1) of 2.80 eV and triplet energy of 2.71 eV can be used as the host material for the blue phosphor, [bis(4,6‐difluorophenylpyridinato‐N,C2′)iridium(III)] tetrakis(1‐pyrazolyl)borate (FIr6; T1=2.73 eV). In both the photo‐ and electro‐excited processes, the energy transfer from the host material to FIr6 was found to be efficient. In a three organic‐layer device, the maximum current efficiency of 37 cd A?1 and power efficiency of 40 Lm W?1 were achieved for the FIr6‐based blue PhOLEDs.  相似文献   

3.
A bipolar host material, 2,4,6‐tris(3‐(carbazol‐9‐yl)phenyl)‐triazine (TCPZ), was synthesized according to reported method. Due to the higher triplet energy compared to green and red phosphors, TCPZ is suitable to host them in phosphorescent organic light‐emitting diodes (PhOLEDs). Although the triplet of TCPZ is slightly lower than a common blue phosphor, good blue PhOLEDs using TCPZ as the host were successfully demonstrated in this work. By low temperature emission measurement, it was found that the energy splitting between the singlet and triplet of TCPZ is as small as 0.24 eV. Therefore, thermal activated energy transfer from triplet to singlet in the host TCPZ is expected to occur, which can be afterwards efficiently transferred to the blue phosphor, hence enabling it to host blue phosphor. As a result, TCPZ can be used as host for phosphors in panchromatic range. Additionally, single‐carrier devices clearly prove its good bipolar transport feature, beneficial to device performance. By using TCPZ as a host, high performance deep‐red, green and blue PhOLEDs have been achieved, with maximum efficiencies of 9.3 cd·A?1 (13.2%), 81.3 cd·A?1 (23.1%) and 17.03 cd·A?1 (10.4%), respectively.  相似文献   

4.
Light-emitting diodes with perovskite luminophores have great potential in next-generation displays because of their exceptional color purity with narrow emission bandwidth, broadband color tunability, and solution processability. However, their low luminescent efficiency is a critical drawback. Here, we report the first demonstration of a multicolor, large-area, perovskite display, which can be made flexible by using an optimized perovskite emissive layer sandwiched between inorganic metal oxide charge transport layers, all of which are coated via a facile solution process. We show that advanced interfacial engineering, especially the energy level alignment at the interface, plays a vital role in determining the device performance because of its effects on charge injection, transport, and recombination. These devices exhibit maximum current and power efficiencies of 74.25 cd A?1 and 89.72 lm/w for green emission, 21.40 cd A?1 and 25.84 lm/w for red emission, and 15.21 cd A?1 and 15.84 lm/w for blue emission, respectively. Furthermore, with the introduction of inorganic charge transport layers, these devices exhibit high environmental stability, and the encapsulated devices have operating lifetimes exceeding 450 h with an initial brightness of 1000 cd/m2.  相似文献   

5.
A series of novel solution-processable small-molecule host materials: 2DPF-TCz, 2SBF-TCz, 27DPF-TCz, and 27SBF-TCz comprising a fluorene monomer as the rigid core and tri-carbazole as the periphery have been designed and synthesized, and their optical, electrochemical, and thermal properties have been fully characterized. The host materials exhibit high glass-transition temperatures (231–310 °C) and high triplet energy levels (2.61–2.73 eV). High-quality amorphous thin films can be obtained by spin-coating the host materials from solutions. It is found that the HOMO level of the host materials can be tuned by linking the tri-carbazole unit to the 2,7 positions of the fluorine core, resulting in appropriate HOMO energy levels (−5.36 to −5.23 eV) for improved hole-injection in the device. Solution-processed blue and green electrophosphorescent devices bases on the developed host materials exhibit high efficiencies of 21.2 and 34.8 cd A−1, respectively.  相似文献   

6.
Three phosphine sulfide-based bipolar host materials, viz CzPhPS, DCzPhPS, and TCzPhPS, were facilely prepared through a one-pot synthesis in excellent yields. The developed hosts exhibit superior thermal stabilities with the decomposition temperatures (Td) all exceeding 350 °C and the melting temperatures (Tm) over 200 °C. In addition, their triplet energy (ET) levels are estimated to be higher than 3.0 eV, illustrating that they are applicable to serve as hosts for blue phosphorescent organic light-emitting diodes (PhOLEDs). The maxima luminance, current efficiency (CE), power efficiency (PE), and external quantum efficiency (EQE) of 17,223 cd m−2, 36.7 cd A−1, 37.5 lm W−1, and 17.5% are achieved for the blue PhOLEDs hosted by CzPhPS. The PhOLEDs based on DCzPhPS and TCzPhPS show inferior device performance than that of CzPhPS, which might be ascribed to the deteriorated charge transporting balance as the increased number of the constructed carbazole units in DCzPhPS and TCzPhPS molecules would enhance the hole-transporting ability of the devices to a large extent. Our study demonstrates that the bipolar hosts derived from phosphine sulfide have enormous potential applications in blue PhOLEDs, and the quantity of donors should be well controlled to exploit highly efficient phosphine sulfide-based hosts.  相似文献   

7.
An adamantane‐based host material, namely, 4‐{3‐[4‐(9H‐carbazol‐9‐yl)phenyl]adamantan‐1‐yl}benzonitrile (CzCN‐Ad), was prepared by linking an electron‐donating carbazole unit and an electron‐accepting benzonitrile moiety through an adamantane bridge. In this approach, two functional groups were attached to tetrahedral points of adamantane to construct an “sp3” topological configuration. This design strategy endows the host material with a high triplet energy of 3.03 eV due to the disruption of intramolecular charge transfer. Although CzCN‐Ad has a low molecular weight, the rigid nonconjugated adamantane bridge results in a glass transition temperature of 89 °C. These features make CzCN‐Ad suitable for fabricating blue phosphorescent organic light‐emitting diodes (PhOLEDs). The devices based on sky‐blue phosphor bis[(4,6‐difluorophenyl)pyridinato‐N,C2′](picolinato)iridium(III) (FIrpic) achieved a high maximum external quantum efficiency (EQE) of 24.1 %, which is among the best results for blue PhOLEDs ever reported. Furthermore, blue PhOLEDs with bis(2,4‐difluorophenylpyridinato)‐tetrakis(1‐pyrazolyl)borate iridium(III) (FIr6) as dopant exhibited a maximum EQE of 14.2 % and a maximum luminance of 34 262 cd m?2. To the best of our knowledge, this is the highest luminance ever reported for FIr6‐based PhOLEDs.  相似文献   

8.
Two novel bipolar hosts (CzFCN2 and CzDFCN) comprising a hole-transport carbazole donor and electron-transport cyano-substituted fluorene acceptor have been synthesized, and their thermal, photophysical, and electrochemical properties were characterized. The non-conjugated linkage between the carbazole donor and the cyano-substituted fluorene acceptor provides excellent thermal/morphological properties and high triplet energies (ET=2.86 eV) for both CzFCN2 and CzDFCN. These bipolar hosts also exhibited reversible redox behavior, which makes them good candidates for the host material in efficient phosphorescent organic light-emitting diode (PhOLED) devices. Multi-color PhOLED devices incorporating CzFCN2 and CzDFCN as the universal host achieved maximum external quantum efficiencies (ηext) as high as 10.7, 17.0, 17.2, and 17.6% for blue, green, yellow, and red devices, respectively. In addition, three-component white PhOLEDs (WOLEDs) based on CzFCN2 and CzDFCN as host materials exhibited high color stabilities with ηext as high as 10.5 and 12.4% and power efficiencies (ηp) of 20.5 and 26.7 lm W−1, respectively.  相似文献   

9.
Four multifunctional 8-hydroxyquinoline derivatives were designed and synthesized, their structures were identified by FT-IR, 1H NMR, MS and elemental analysis. Among them are (E)-2-(2-(9-(4-methoxyphenyl)-9H-carbazol-3-yl)vinyl) quinolato-zinc (1), (E)-2-(2-(9-p-tolyl-9H-carbazol-3-yl)vinyl)quinolato-zinc (2), (E)-2-(2-(9H-fluoren-2-yl)vinyl)quinolato-zinc (3), and (E)-2-(2-(phenanthren-9-yl)vinyl)quinolato-zinc (4). The electroluminescence (EL) and hole-transporting characteristics of these materials were investigated on four configurations: (A) ITO/2-TNATA/NPB/1, 2, 3 or 4/Alq3/LiF/Al; (B) ITO/2-TNATA/NPB/1, 2, 3 or 4/LiF/Al; (C) ITO/2-TNATA/1, 2, 3 or 4/Alq3/LiF/Al; and (D) ITO/2-TNATA/1 or 2/NPB/Alq3/LiF/Al. The maximum luminescence and current efficiencies of are 3556 cd m−2 (at 13 V) and 2.17 cd A−1 (at 9 V) for compound 2, 4624 cd m−2 (at 15 V) and 2.1 cd A−1 (at 7 V) for compound 3, and 3164 cd m−2 (at 14 V) and 1.83 cd A−1 (at 13 V) for compound 4 in the configuration D, respectively, indicating that they are good multifunctional materials with strong hole-transporting abilities and luminescence properties.  相似文献   

10.
A new carbazole–fluorenyl hybrid compound, 3,3′(2,7‐di(naphthaline‐2‐yl)‐9H‐fluorene‐9,9‐diyl)bis(9‐phenyl‐9H‐carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue‐violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2‐phq)3 in NFBC, a highly efficient orange organic light‐emitting diode (OLED) with a maximum efficiency of 32 cd A?1 (26.5 Lm W?1) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll‐off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A?1 at a luminance of 1000 and 10 000 cd m?2, respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W?1 (21.9 cd A?1) was also obtained.  相似文献   

11.
A new oligosiloxane derivative (ODCzMSi) functionalized with the well‐known 1,3‐bis(9‐carbazolyl)benzene (mCP) pendant moiety, directly linked to the silicon atom of the oligosiloxane backbone, has been synthesized and characterized. Compared to mCP, the attachment of the oligosiloxane chain significantly improves the thermal and morphological stabilities with a high decomposition temperature (Td=540 °C) and glass transition temperature (Tg=142 °C). The silicon–oxygen linkage of ODCzMSi disrupts the backbone conjugation and maintains a high triplet energy level (ET=3.0 eV). A phosphorescent organic light‐emitting diode (PhOLED) using iridium bis(4,6‐difluorophenyl)pyridinato‐N,C2 picolinate (FIrpic) as the emitter and ODCzMSi as the host shows a relatively low turn‐on voltage of 5.0 V for solution‐processed PhOLEDs, maximum external quantum efficiency of 9.2 %, and maximum current efficiency of 17.7 cd A?1. The overall performance of this device is competitive with the best reported solution‐processed blue PhOLEDs. Memory devices using ODCzMSi as an active layer exhibit non‐volatile write‐once read‐many‐times (WORM) characteristics with high stability in retention time up to 104 s and a low switch on voltage. This switching behaviour is explained by different stable conformations of ODCzMSi with high or low conductivity states which are obtained under the action of electric field through a π–π stacking alignment of the pendant aromatic groups. These results with both PhOLEDs and memory devices demonstrate that this oligosiloxane–mCP hybrid structure is promising and versatile for high performance solution‐processed optoelectronic applications.  相似文献   

12.
Pyridinyl-carbazole fragments containing low molar mass compounds as host derivatives H1 and H2 were synthesized, investigated, and used for the preparation of electro-phosphorescent organic light-emitting devices (PhOLEDs). The materials demonstrated high stability against thermal decomposition with the decomposition temperatures of 361–386 °C and were suitable for the preparation of thin amorphous and homogeneous layers with very high values of glass transition temperatures of 127–139 °C. It was determined that triplet energy values of the derivatives are, correspondingly, 2.82 eV for the derivative H1 and 2.81 eV for the host H2. The new derivatives were tested as hosts of emitting layers in blue, as well as in green phosphorescent OLEDs. The blue device with 15 wt.% of the iridium(III)[bis(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic) emitter doping ratio in host material H2 exhibited the best overall characteristics with a power efficiency of 24.9 lm/W, a current efficiency of 23.9 cd/A, and high value of 10.3% of external quantum efficiency at 100 cd/m2. The most efficient green PhOLED with 10 wt% of Ir(ppy)3 {tris(2-phenylpyridine)iridium(III)} in the H2 host showed a power efficiency of 34.1 lm/W, current efficiency of 33.9 cd/A, and a high value of 9.4% for external quantum efficiency at a high brightness of 1000 cd/m2, which is required for lighting applications. These characteristics were obtained in non-optimized PhOLEDs under an ordinary laboratory atmosphere and could be improved in the optimization process. The results demonstrate that some of the new host materials are very promising components for the development of efficient phosphorescent devices.  相似文献   

13.
In this study, two new dibenzofuran derivatives featuring one or two cyanocarbazole units, 6‐(dibenzo[b,d]furan‐4‐yl)‐9‐phenyl‐9H‐carbazole‐3‐carbonitrile ( mBFCzCN) and 6,6′‐(dibenzo[b,d]furan‐4,6‐diyl)bis(9‐phenyl‐9H‐carbazole‐3‐carbonitrile) ( dBFCzCN ), were developed as host materials for phosphorescent organic light emitting diodes (PhOLEDs). A new molecular design connecting the cyanocarbazole to the dibenzofuran using the cyanocarbazole 6‐position instead of its 9‐position was created, and the effects of number of cyanocarbazole units in the dibenzofuran building block on the photophysical and electroluminescence properties were investigated in detail. The mBFCzCN compound revealed high triplet energy (2.78 eV) than that of dBFCzCN (2.68 eV) and good bipolar charge transporting properties. The potential of these materials as hosts for blue and green PhOLEDs was investigated using bis(4,6‐(difluorophenyl)pyridinato‐N,C2′)picolinate iridium(III) (FIrpic) and tris(2‐phenylpyridinato)iridium(III) (Ir(ppy)3) dopants, respectively. The results indicated that the mBFCzCN with one cyanocarbazole unit showed better device performance than the dBFCzCN with two cyanocarbazole units in the blue and green devices. High external quantum efficiencies of 19.0 and 21.2 % were demonstrated in the blue and green PhOLEDs with the mBFCzCN host due to its high triplet energy and good bipolar charge transporting characteristics.  相似文献   

14.
A series of novel N-coumarin derivatives containing oligothiophene-substituted N-coumarins as the core and bis(aryl)carbazoles as the substituent were synthesized and characterized. Their optical, electrochemical, and thermal properties were investigated. The electroluminescence (EL) properties of the selected materials were also studied. Solution-processed OLEDs with green and yellow light emission, turn-on voltages of 2.7–2.9 V, and maximum luminance efficiencies of up to 3.94 cd A−1 at 17.6 mA cm−2 (maximum power efficiency of 1.62 lm W−1) were prepared.  相似文献   

15.
Two novel light-emitting materials bis-[2′-2″-(9H-fluoren-2-yl)-vinyl-8-hydroxyquinoline] zinc(II) (3) and bis-[2′-4″-(4,5-diphenyl-1H-imidazol-2-yl)styryl-8-hydroxyquinoline] zinc(II) (4) containting 8-hydroxyquinoline and fluorene or imidazole moieties have been synthesized. The optical properties of these complexes were influenced by the styryl substituents, and exhibited orange-emission. They have higher fluorescence quantum yields than Alq3, and good stabilities with thermal decomposition temperatures 395 °C and 435 °C. The single-layer OLED fabricated by 3 emitted lemon-yellow, and exhibited good device performance with a maximum luminance of 489 cd m−2, and luminance efficiency of up to 0.41 cd A−1. The single-layer OLED fabricated by 4 emitted yellow-green, and exhibited good device performance with a maximum luminance of 323 cd m−2, and luminance efficiency of up to 0.54 cd A−1.  相似文献   

16.
Two bipolar materials,2,5-bis(2-(9H-carbazole-9-yl)phenyl)-1,3,4-oxadiazole(o-CzOXD)and 2,5-bis(2-(3',6'-di-tert-butyl-9H-carbazole-9-yl)phenyl)-1,3,4-oxadiazole(tBu-o-CzOXD),were synthesized according to reported methods.In parallel study,it was demonstrated that introduction of inert tert-butyl group improved material thermal stability,even though this modification only had a slight influence to the photophysical and electrochemical properties of these materials.A comparative study focusing on effects of heat treatment was carried out on the quartz glass substrates with vacuum deposited films containing one of the bipolar host doped with 6 wt%fac-tris(2-phenylpyridinato-N,C2’)iridium(Ir(ppy)3).Results show that when the two samples were heated,the absorption,emission,and photo images of the host:dopant system changed,with the o-CzOXD suffering more severe degradation under high temperature,which is consistent with their thermal stability.In addition,it was proved that the high temperature-annealed host:dopant system can enhance the emission of the dopant.This finding was used as a guideline to improve our device performance.We fabricated two types of phosphorescent organic light-emitting devices(PhOLEDs),one was based on o-CzOXD,the other was based on tBu-o-CzOXD.They had analogous structure.We investigated the effect of heat on device performance by selectively annealing.Although these two freshly prepared devices exhibited similar performance,when annealed at 90°C for 10 min,the OLEDs based on tBu-o-CzOXD showed significant performance enhancement,which can be attributed to the observation that annealing Ir(ppy)3 doped host can change film morphology and enhance the dopant emission.The maximum efficiencies of the freshly prepared tBu-o-CzOXD device were 25.8 cd A-1,23.1lm W-1,and 9.3%;whereas those for annealed device were 47.0 cd A-1,42.2 lm W-1,and 13.4%.  相似文献   

17.
Several fluorene or carbazole-based dithienosiloles (DTSs) have been synthesized and their thermal, photophysical, and electrochemical properties have been systematically investigated. These compounds show high thermal stability with glass transition temperature above 110 °C as well as decomposition temperatures at ∼400 °C. Intense green emission is observed in the spectral region of 500-510 nm for all compounds (ΦPL=0.31-0.80), that is, attributed to both the 5,5′-substituents of the DTS ring and DTS-based π-π transition. Based on the emission spectra at 77 K, the triplet energy for these compounds was calculated to be within 2.1-2.2 eV, indicating that they may be used as host materials for red emitters in organic light-emitting diodes (OLEDs). All compounds exhibit reversible oxidation and possess low-lying LUMO energies, owing to the conjugated fluorene/carbazole substituents on the DTS. This along with the high thermal/electrochemical stabilities and high fluorescent quantum efficiencies makes the new DTSs compounds promising candidates for use in OLEDs as emitters, host and electron-transporting materials.  相似文献   

18.
Multifunctional donor–acceptor compound 4,4′‐bis(dibenzothiophene‐S,S‐dioxide‐2‐yl)triphenylamine ( DSTPA ) was obtained by linking a strongly electron‐withdrawing core and a strongly electron‐donating core with a biphenyl bridge in linear spatial alignment. DSTPA not only has suitable HOMO and LUMO levels for easily accepting both holes and electrons, it was also demonstrated to have a high fluorescence quantum yield of 0.98 and a high triplet energy level of 2.39 eV. Versatile applications of DSTPA for bipolar transport, green fluorescent emission, and sensitizing a red phosphor were systematically investigated in a series of multi‐ and single‐layer organic light‐emitting devices. In traditional multilayer devices, it shows excellent performance both in an undoped fluorescent device (used as a green emitter and achieving maximum current and power efficiencies (CE and PE) of 12.6 cd A?1 and 9.4 Lm W?1, respectively) and in a red phosphorescent device (used as a host and achieving maximum CE and PE of 26.4 cd A?1 and 26.3 Lm W?1, respectively). Furthermore, DSTPA was also simultaneously used as an emitter, a hole transporter, and an electron transporter in a single‐layer device showing CE and PE of 5.1 cd A?1 and 4.7 Lm W?1, respectively. A single‐layer red phosphorescent device with efficiencies of 11.7 cd A?1 and 12.6 Lm W?1 was obtained by doping DSTPA with a red phosphor. The performances of all of the devices in this work are comparable to the best of their corresponding classes in the literature.  相似文献   

19.
Two hybrids based on 1,8‐disubstituted carbazole, 1,8‐OXDCz and 1,8‐mBICz , have been designed and synthesized through a facile process. The incorporation of oxadiazole or N‐phenylbenzimidazole moieties at the 1,8‐positions of carbazole greatly improves its morphological stability, giving glass transition temperatures (Tg) as high as 138 and 154 °C, respectively. Blue phosphorescent organic light‐emitting devices (PhOLEDs) with 1,8‐mBICz exhibit almost the same performance as a similarly structured device based on the mCP host, and green PhOLEDs employing the new host material 1,8‐OXDCz exhibit an ideal turn‐on voltage (2.5 V at 1.58 cd m?2), a maximum current efficiency (ηc,max) of 73.9 cd A?1, and a power efficiency (ηp,max) of 89.7 lm W?1. These results are among the best performances of [Ir(ppy)3]‐based devices with simple device configurations.  相似文献   

20.
New carbazole-phenylquinoline (CVz-PhQ) based iridium complexes were designed and synthesized for their application in red phosphorescence organic light-emitting diodes (PhOLEDs) and their photophysical, electrochemical and electroluminescence (EL) properties were investigated. The PhOLEDs were fabricated using bis[9-(2-(2-methoxyethoxy)ethyl)-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium 2-pyrazinecarboxylic acid (EO-CVz-PhQ)2Ir(prz) and bis[9-(2-(2-methoxyethoxy)ethyl)-3-(4-phenylquinolin-2-yl)-9H-carbazolato-N,C2′]iridium 5-methyl-2-pyrazinecarboxylic acid (EO-CVz-PhQ)2Ir(mprz) as the emitter and PVK, co-doped with OXD-7 as the electron transport material and TPD as the hole transport material, as the polymer host. The red emissive PhOLEDs, based on the ITO/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS)/4,4′,4″-tris(carbazole-9-yl)triphenylamine (TCTA)/poly(N-vinylcarbazole) (PVK):N,N′-diphenyl-N,N′-(bis(3-methylphenyl)-[1,1-biphenyl]-4,4′-diamine (TPD):1,3-bis[5-(4-tert-butylphenyl)-1,3,4-oxadiazole-2-yl]benzene (OXD-7):Ir complex/cathode configuration, exhibited a maximum external quantum efficiency of 3.68% and a maximum luminance efficiency of 6.69 cd/A. Furthermore, by introducing a TCTA interlayer, the PhOLEDs showed only a slight efficiency roll off of 5.4% from a low current density (1.81 mA/cm2) to a high current density (44.59 mA/cm2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号