首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Lead-free piezoelectric ceramics of (1?x?y)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yLiNbO3 (BNT–BKT–LN-x/y) have been fabricated by a conventional solid-state reaction method, and their microstructure and electrical properties have been investigated. The results of X-ray diffraction (XRD) measurement show that K+, Li+ and Nb5+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. The BKT and LN addition has no remarkable effect on the crystal structure. However, a significant change in grain size took place. Simultaneously, with increasing amount of LN, the temperature for a ferroelectric–antiferroelectric phase transition is clearly reduced. The temperature dependence of dielectric properties suggests that the ceramics have diffuse-type phase transition characteristics. The piezoelectric constant d33 and the electromechanical coupling factor kp of the ceramics attain maximum values of 195 pC/N and 0.336 at x=0.18 and y=0.01.  相似文献   

3.
《Current Applied Physics》2010,10(4):1059-1061
Lead-free 0.79(Bi0.5Na0.5)TiO3–0.14[Bi0.5(K0.5−xLix)]TiO3–0.07BaTiO3 (BNBK79 + xLi, x = 0.0, 0.1, 0.2, 0.25, 0.3, and 0.4) ceramics were prepared by conventional solid state reaction process. The crystalline structures and surface morphologies are investigated by X-ray diffraction method and scanning electron microscopy. Dielectric and piezoelectric properties were measured. With increasing of lithium substitution, the Curie temperatures of BNBK79 + xLi ceramics increase, but the maximum value of the dielectric constant decreases. And a relatively large remnant polarization of 17.6 μC/cm2 and 157 pC/N of d33 has been obtained when x = 0.3.  相似文献   

4.
Lead-free ferroelectric ceramics with a morphotropic phase boundary (MPB) composition 85.4% (Bi0.5Na0.5)TiO3–2.6%BaTiO3–12.0% (Bi0.5K0.5)TiO3 (BNT-BT-BKT at a molar ratio of 85.4: 2.6: 12.0) doped with 0.8?mol% Nb2O5 were studied for their crystalline phases and microstructure. The crystalline phases were identified using X-ray diffractometry (XRD) with the contents determined using the Rietveld refinement technique. The phase-transformation-induced microstructure was analyzed using transmission electron microscopy (TEM) and the crystal symmetries were determined using the convergent-beam electron diffraction (CBED) technique. Samples sintered at 1200°C contain a mixture of cubic (C-), tetragonal (T-) and rhombohedral (R-) phases at a ratio of C/T/R?=?56.6: 28.4: 15.0?wt%. Two types of grains are produced: one characterized by a featureless contrast consisting of nano-scale T-domains dispersed in a C-phase matrix; the other a core-shell structure with a shell containing twin and anti-phase-boundary (APB) domains coexisting with a (C?+?T)-phase mixture core. The T- and R-twin boundaries are determined to {111}T and {110}R, respectively, and the fault vector for T-APB to R?=?1/2?110]T. The characteristic microstructure is discussed in terms of the reduction in the point group symmetry and changes in the unit cell volume or the Bravais lattice upon phase transformation among the C-, T- and R-phases. The twin and the APB domains are induced and explained.  相似文献   

5.
The Ba0.5Ca0.5TiO3 (BCT) composition dependent dielectric and structural properties of (1?x)K0.5Na0.5NbO3xBa0.5Ca0.5TiO3 powders were investigated. Room temperature x-ray diffraction revealed the powder structure to transform from orthorhombic to cubic with increasing BCT composition. The frequency dependent dielectric constant measurements revealed a shift in the temperature of the maximum dielectric constant for at frequencies, suggesting that the system exhibits ferroelectric relaxor behavior. The system containing 15% BCT showed the closest calculated Curie–Weiss exponent to 2, which the exponent for a relaxor ferroelectric.  相似文献   

6.
7.
《中国物理快报》2003,20(2):290-292
We prepared bismuth sodium titanate (Bi0.5Na0.5TiO3)ultrafine powders by the sol-gel method.The dielctric properties of the pressed pellets and fired ceramics with different grain sizes as a function of tempernature at various frequencies were studied.With decreasing grain size,the dielecric anomaly around 200℃ increases,while the dielectric thermal hysteresis decreases,All the samples with grain sizes larger than 100nm show dielectric peaks at temperature of about 350℃.The very little change in Tm observed down to the critical size indicates that Bi0.5Na0.5TiO3 is an order-disorder system above 200℃,In addition,the dielectric peak becomes lower with decreasing grain size and the ferroelectric critical size of Bi0.5Nan0.5TiO3 was eventually determined to be about 100nm according to the disappearance of dielectric peak.  相似文献   

8.
The 0.5K0.5Bi0.5TiO3–0.5PbTiO3 ceramics were prepared by following a standard solid-state method. The Raman, thermal and dielectric properties of these ceramics were investigated. The X-ray measurements showed that samples have single perovskite-type structure with tetragonal symmetry. Dielectric study revealed that the dielectric behaviour of the investigated ceramics is rather of normal ferroelectrics with large thermal hysteresis. The transition temperature observed by means of differential scanning calorimetry measurements is in good agreement with that obtained from dielectric study.  相似文献   

9.
Highly (110)-oriented trilayered BaTiO3 (25 nm) /(Na0.5Bi0.5)0.94Ba0.06TiO3 (300 nm) / BaTiO3 (25 nm) thin films were deposited on Pt/Ti/SiO2/Si substrates via chemical solution deposition. It was found that the inserted bottom BaTiO3 layer between Pt and (Na0.5Bi0.5)0.94Ba0.06TiO3 is very effective for promoting the crystallinity and (110)-oriented growth of NBT-BT films. Meanwhile, the BaTiO3 layers also provide better interfaces between the ferroelectric thin film and the electrodes in terms of reducing leakage current. The trilayered films showed enhanced dielectric and ferroelectric properties compared with the pure NBT-BT films. Well saturated hysteresis loops were obtained due to good electrical insulating properties in the high electric field region.  相似文献   

10.
Physics of the Solid State - The structure, dielectric characteristics, and magnetoelectric effect of a 0.5BiFeO3–0.5PbFe0.5Nb0.5O3 multiferroic ceramics are studied. We found that the...  相似文献   

11.
This paper investigates the dielectric properties of (Na0.5K0.5Bi)0.5TiO3 crystal at intermediate frequencies (1kHz \le f \le 1MHz) in the temperature range of 30--560℃. A pronounced high-temperature diffuse dielectric anomaly has been observed. This dielectric anomaly is shown to arise from a Debye-like dielectric dispersion that slows down following an Arrhenius law. The activation energy Er obtained in the fitting process is about 0.69eV. It proposes that the dielectric peak measured at low frequency above 400℃ is not related to the phase transition but to a space-charge relaxation.  相似文献   

12.
Lead-free piezoelectric ceramics 0.92(Bi0.5Na0.5)TiO3-0.08BaTiO3 + xmol% Co3+ (BNBT-Co, x = 0-8) are prepared by the solid state reaction method. Effects of the amount of Co^3+ on the electrical properties and phase transition are studied. The results indicate that the addition of Co^3+ enhances the mechanical quality factor Q^3+ significantly, whereas the dissipation factor tanδ has a minimum value at x = 3.5. Meanwhile, addition of Co^3+ leads to small decreases of piezoelectric constant d33, and planar electromechanical coupling kp. The present 0.92(Bio.aNao.5) TiO3-0.08BaTiO3+3.5 moi% Co^3+ ceramics exhibit good performance with mechanical quality factor Qm = 910, piezoelectric constant d33 = 106pC/N, planar electromechanical coupling kp =10% and dissipation factor tanδ = 1.1% at 1 kHz. Saturated polarization hysteresis loops have been obtained for BNBT-Co ceramics. Two dielectric peaks at depolarization temperature Td and Tm appear in the curves of ε33^T vs temperature for the pure BNBT ceramics. However, the first dielectric peak Td disappears after the addition of Co^3+, which means that the transition from ferroelectric to antiferroelectric phase has been eliminated.  相似文献   

13.
通过对(1-x)(K0.5Na0.5)NbO3-xSrTiO3(0≤x≤0.15)陶瓷的相组成、晶体结构和介电性能的研究发现,该陶瓷为单一的钙钛矿结构相.当x含量较小(x<0.1)时为正交相结构,x≥0.1时转变为四方相结构.随着SrTiO3掺杂量的增加,样品的致密度增加,样品由正常铁电相逐渐向弥散铁电相转变,且相变温度明显下降,其相变峰的半高宽D和临界指数γ,随 x 的增加而增加.样品损耗ε″r(复介电常数虚部)随温度T的变化表明低温时弛豫极化损耗起主要作用,高温时漏导损耗起主要作用.同时介电常数实部ε′r随频率的变化显示(1-x)(K0.5Na0.5)NbO3-xSrTiO3弛豫为德拜弛豫.  相似文献   

14.
It was suggested that Na–Mg carbonates might play a substantial role in mantle metasomatic processes through lowering melting temperatures of mantle peridotites. Taking into account that natrite, Na2CO3, eitelite, Na2Mg(CO3)2, and magnesite, MgCO3, have been recently reported from xenoliths of shallow mantle (110–115?km) origin, we performed experiments on phase relations in the system Na2CO3–MgCO3 at 3?GPa and 800–1250°C. We found that the subsolidus assemblages comprise the stability fields of Na-carbonate?+?eitelite and eitelite?+?magnesite with the transition boundary at 50?mol% Na2CO3. The Na-carbonate–eitelite eutectic was established at 900°C and 69?mol% Na2CO3. Eitelite melts incongruently to magnesite and a liquid containing about 55?mol% Na2CO3 at 925?±?25 °C. At 1050 °C, the liquid, coexisting with Na-carbonate, contains 86–88?mol% Na2CO3. Melting point of Na2CO3 was established at 1175?±?25 °C. The Na2CO3 content in the liquid coexisting with magnesite decreases to 31?mol% as temperature increases to 1250°C. According to our data, the Na- and Mg-rich carbonate melt, which is more alkaline than eitelite, can be stable at the P–T conditions of the shallow lithospheric mantle with thermal gradient of 45?mW/m2 corresponding to temperature of 900 °C at 3?GPa.  相似文献   

15.
采用氧化固相法制备了(1-x)(Bi0.5Na0.5)TiO3-xBa(Ti0.95Zr0.05)O3(BNT-BZT)陶瓷,其中掺入量x的值分别为0,0.04,0.05,0.06,0.07.研究了BNT-BZT体系陶瓷的准同型相界以及陶瓷材料的微观结构和性能之间的关系,并探讨了陶瓷的介电性能和铁电等性能.通过探究Ba(Ti,Zr)O3(BZT)掺杂量对BNT 各性能的影响得出了当掺杂量x=0.05得到结构较为致密,介电,铁电性能较好的样本,对工业化研究和生产有重要的意义  相似文献   

16.
Lead-free (Na0.5K0.5)NbO3-xmol% ScTaO4 (x=0-1.5) ceramics are prepared using the conventional solid-state reaction method and their properties are investigated in detail. The results indicate that the piezoelectric properties and density are improved by the introduction of ScTaO4. Due to the high orthorhombic-tetragonal phase transition temperature TO-T (around 200°C), stable piezoelectric properties against temperature are obtained. In a wide temperature range of 15-160°C, kp of the (Na0.5K0.5)NbO3-0.5mol% ScTaO4 ceramic remains almost unchanged and d31 increases slightly from 59pC/N to 71pC/N. The deliquescent problem is effectively solved by the addition of ScTaO4. The piezoelectric properties of ScTaO4 modified (Na0.5K0.5)NbO3 ceramics show no obvious reduction and dielectric loss increases slightly after 120h of immersion. From the analysis, it is suggested that the density is an important factor that improves the humidity resistance of the specimens.  相似文献   

17.
Lead-free ceramics (1?x)NaNbO3xBi0.5Li0.5TiO3 have been fabricated by an ordinary sintering technique, and their electric properties and temperature characteristics have been studied. All the ceramics possess a perovskite structure with orthorhombic symmetry, indicating that (Bi0.5Li0.5)TiO3 diffuses into NaNbO3 lattices to form a new solid solution. A low (Bi0.5Li0.5)TiO3 doping level transforms the NaNbO3 ceramics from antiferroelectric to ferroelectric. The ceramics with x ≤ 0.075 are normal ferroelectric, and the ferroelectric-paraelectric phase become diffusives with the doping level of Bi0.5Li0.5TiO3 increasing. As x increases, the Curie temperature of the ceramics decreases linearly, while the relative permittivity εr increases. 0.925NaNbO3–0.075(Bi0.5Li0.5)TiO3 ceramic exhibits the relatively large piezoelectric constant (d33 = 58 pC/N), high Curie temperature (TC = 228 °C) and good temperature stability, suggesting that the ceramics are one of new possible candidates for lead-free piezoelectric materials.  相似文献   

18.
Lead-free (1?x)[K0.5Na0.5NbO3]?x[LiSbO3] (x=0, 0.04, 0.05 and 0.06)/(KNN-LS) ceramics were prepared by conventional solid-state reaction route (CSSR). For dense morphology pure KNN ceramic was sintered at 1120 °C and LS modified KNN ceramics were sintered at 1080 °C for 4 h, respectively. The structural study at room temperature (RT) revealed the transformation of pure orthorhombic to tetragonal structure with the increase in LS content in KNN-LS ceramics. Temperature dependent dielectric study confirmed the increase of diffuse phase transition nature with the increase in LS content in KNN-LS ceramics. The presence of orthorhombic to tetragonal (TO?T) polymorphic phase transition temperature (PPT) ~43 °C confirmed the presence of two ferroelectric (orthorhombic and tetragonal) phases in 0.95KNN-0.05LS ceramics at RT. 0.95KNN-0.05LS ceramics showed better ferroelectric and piezoelectric properties i.e., remnant polarization (Pr)~18.7 μC/cm2, coercive field (Ec)~11.8 kV/cm, piezoelectric coefficient (d33)~215 pC/N, coupling coefficient (kp)~0.415 and remnant strain ~0.07% were obtained.  相似文献   

19.
20.
(1−xy)Bi0.5Na0.5TiO3xBi0.5K0.5TiO3yBi0.5Li0.5TiO3 lead-free piezoelectric ceramics have been prepared by an ordinary sintering technique, and their structure, electrical properties, and temperature characteristics have been studied systematically. The ceramics can be well-sintered at 1050–1150 °C. The increase in K+ concentration decreases the grain-growth rate and promotes the formation of grains with a cubic shape, while the addition of Li+ decreases greatly the sintering temperature and assists in the densification of BNT-based ceramics. The results of XRD diffraction show that K+ and Li+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a solid solution with a pure perovskite structure. As x increases from 0.05 to 0.50, the ceramics transform gradually from rhombohedral phase to tetragonal phase and consequently a morphotropic phase boundary (MPB) is formed at 0.15≤x≤0.25. The concentration y of Li+ has no obvious influence on the crystal structure of the ceramics. Compared with pure Bi0.5Na0.5TiO3, the partial substitution of K+ and Li+ for Na+ lowers greatly the coercive field E c and increases the remanent polarization P r of the ceramics. Because of the MPB, lower E c and large P r, the piezoelectricity of the ceramics is improved significantly. For the ceramics with the compositions near the MPB (x=0.15–0.25 and y=0.05–0.10), the piezoelectric properties become optimum: piezoelectric coefficient d 33=147–231 pC/N and planar electromechanical coupling factor k P=20.2–41.0%. In addition, the ceramics exhibit relaxor characteristic, which probably results from the cation disordering in the 12-fold coordination sites. The depolarization temperature T d shows a strong dependence on the concentration x of K+ and reaches the lowest values at the MPB. The temperature dependences of the ferroelectric and dielectric properties at high temperatures may imply that the ceramics may contain both the polar and non-polar regions at temperatures above T d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号